
Advanced Dynamic Programming

Thomas J. Sargent and John Stachurski

May 03, 2024

CONTENTS

I Dynamic Programming Squared 3
1 Optimal Unemployment Insurance 5

1.1 Overview . 5
1.2 Shavell and Weiss’s Model . 5
1.3 Private Information . 8
1.4 Outcomes . 15

2 Stackelberg Plans 19
2.1 Overview . 19
2.2 Duopoly . 20
2.3 Stackelberg Problem . 23
2.4 Two Bellman Equations . 25
2.5 Stackelberg Plan for Duopoly . 26
2.6 Recursive Representation of Stackelberg Plan . 27
2.7 Dynamic Programming and Time Consistency of Follower’s Problem 29
2.8 Computing Stackelberg Plan . 30
2.9 Time Series for Price and Quantities . 32
2.10 Time Inconsistency of Stackelberg Plan . 34
2.11 Recursive Formulation of Follower’s Problem . 35
2.12 Markov Perfect Equilibrium . 40
2.13 Comparing Markov Perfect Equilibrium and Stackelberg Outcome 42

3 Ramsey Plans, Time Inconsistency, Sustainable Plans 45
3.1 Overview . 46
3.2 The Model . 46
3.3 Structure . 48
3.4 Intertemporal Structure . 49
3.5 Four Models of Government Policy . 49
3.6 A Ramsey Planner . 50
3.7 A Constrained-to-a-Constant-Growth-Rate Ramsey Government . 52
3.8 Markov Perfect Governments . 52
3.9 Outcomes under Three Timing Protocols . 53
3.10 A Fourth Model of Government Decision Making . 61
3.11 Sustainable or Credible Plan . 62
3.12 Whose Credible Plan is it? . 68
3.13 Comparison of Equilibrium Values . 68
3.14 Note on Dynamic Programming Squared . 69

4 Optimal Taxation with State-Contingent Debt 71
4.1 Overview . 71

i

4.2 A Competitive Equilibrium with Distorting Taxes . 72
4.3 Recursive Formulation of the Ramsey Problem . 83
4.4 Examples . 90

5 Optimal Taxation without State-Contingent Debt 103
5.1 Overview . 103
5.2 Competitive Equilibrium with Distorting Taxes . 104
5.3 Recursive Version of AMSS Model . 112
5.4 Examples . 119

6 Fluctuating Interest Rates Deliver Fiscal Insurance 131
6.1 Overview . 131
6.2 Forces at Work . 133
6.3 Logical Flow of Lecture . 133
6.4 Example Economy . 136
6.5 Reverse Engineering Strategy . 146
6.6 Code for Reverse Engineering . 146
6.7 Short Simulation for Reverse-engineered: Initial Debt . 148
6.8 Long Simulation . 156
6.9 BEGS Approximations of Limiting Debt and Convergence Rate . 157

7 Fiscal Risk and Government Debt 163
7.1 Overview . 163
7.2 The Economy . 164
7.3 Long Simulation . 166
7.4 Asymptotic Mean and Rate of Convergence . 190

8 Competitive Equilibria of a Model of Chang 199
8.1 Overview . 199
8.2 Setting . 201
8.3 Competitive Equilibrium . 203
8.4 Inventory of Objects in Play . 203
8.5 Analysis . 204
8.6 Calculating all Promise-Value Pairs in CE . 208
8.7 Solving a Continuation Ramsey Planner’s Bellman Equation . 223

9 Credible Government Policies in a Model of Chang 231
9.1 Overview . 231
9.2 The Setting . 232
9.3 Calculating the Set of Sustainable Promise-Value Pairs . 238

II Other 255
10 Troubleshooting 257

10.1 Fixing Your Local Environment . 257
10.2 Reporting an Issue . 258

11 References 259

12 Execution Statistics 261

Bibliography 263

Index 265

ii

Advanced Dynamic Programming

This website presents a set of lectures on advanced topics in dynamic programming.
• Dynamic Programming Squared

– Optimal Unemployment Insurance

– Stackelberg Plans

– Ramsey Plans, Time Inconsistency, Sustainable Plans

– Optimal Taxation with State-Contingent Debt

– Optimal Taxation without State-Contingent Debt

– Fluctuating Interest Rates Deliver Fiscal Insurance

– Fiscal Risk and Government Debt

– Competitive Equilibria of a Model of Chang

– Credible Government Policies in a Model of Chang

• Other
– Troubleshooting

– References

– Execution Statistics

CONTENTS 1

Advanced Dynamic Programming

2 CONTENTS

Part I

Dynamic Programming Squared

3

CHAPTER

ONE

OPTIMAL UNEMPLOYMENT INSURANCE

1.1 Overview

This lecture describes a model of optimal unemployment insurance created by Shavell and Weiss (1979) [SW79].
We use recursive techniques of Hopenhayn and Nicolini (1997) [HN97] to compute optimal insurance plans for Shavell
and Weiss’s model.
Hopenhayn and Nicolini’s model is a generalization of Shavell and Weiss’s along dimensions that we’ll soon describe.

1.2 Shavell and Weiss’s Model

An unemployed worker orders stochastic processes of consumption and search effort {𝑐𝑡, 𝑎𝑡}∞
𝑡=0 according to

𝐸
∞

∑
𝑡=0

𝛽𝑡 [𝑢(𝑐𝑡) − 𝑎𝑡] (1.1)

where 𝛽 ∈ (0, 1) and 𝑢(𝑐) is strictly increasing, twice differentiable, and strictly concave.
We assume that 𝑢(0) is well defined.
We require that 𝑐𝑡 ≥ 0 and 𝑎𝑡 ≥ 0.
All jobs are alike and pay wage 𝑤 > 0 units of the consumption good each period forever.
An unemployed worker searches with effort 𝑎 and with probability 𝑝(𝑎) receives a permanent job at the beginning of the
next period.
Furthermore, 𝑎 = 0 when the worker is employed.
The probability of finding a job is 𝑝(𝑎) where 𝑝 is an increasing, strictly concave, and twice differentiable function of 𝑎
that satisfies 𝑝(𝑎) ∈ [0, 1] for 𝑎 ≥ 0, 𝑝(0) = 0.
The consumption good is nonstorable.
An unemployed worker has no savings and cannot borrow or lend.
An insurance agency or planner is the unemployed worker’s only source of consumption smoothing over time and across
states.
Once a worker has found a job, he is beyond the planner’s grasp.

• This is Shavell and Weiss’s assumption, but not Hopenhayn and Nicolini’s.
• Hopenhayn andNicolini allow the unemployment insurance agency to impose history-dependent taxes on previously
unemployed workers.

5

Advanced Dynamic Programming

• Since there is no incentive problem after the worker has found a job, it is optimal for the agency to provide an
employed worker with a constant level of consumption.

• Hence, Hopenhayn and Nicolini’s insurance agency imposes a permanent per-period history-dependent tax on a
previously unemployed but presently employed worker.

1.2.1 Autarky

As a benchmark, we first study the fate of an unemployed worker who has no access to unemployment insurance.
Because employment is an absorbing state for the worker, we work backward from that state.
Let 𝑉 𝑒 be the expected sum of discounted one-period utilities of an employed worker.
Once the worker is employed, 𝑎 = 0, making his period utility be 𝑢(𝑐) − 𝑎 = 𝑢(𝑤) forever.
Therefore,

𝑉 𝑒 = 𝑢(𝑤)
(1 − 𝛽) . (1.2)

Now let 𝑉 𝑢 be the expected discounted present value of utility for an unemployed worker who chooses consumption,
effort pair (𝑐, 𝑎) optimally.
It satisfies the Bellman equation

𝑉 𝑢 = max
𝑎≥0

{𝑢(0) − 𝑎 + 𝛽 [𝑝(𝑎)𝑉 𝑒 + (1 − 𝑝(𝑎))𝑉 𝑢]}. (1.3)

The first-order condition for a maximum is

𝛽𝑝′(𝑎) [𝑉 𝑒 − 𝑉 𝑢] ≤ 1, (1.4)

with equality if 𝑎 > 0.
Since there is no state variable in this infinite horizon problem, there is a time-invariant optimal search intensity 𝑎 and an
associated value of being unemployed 𝑉 𝑢.
Let 𝑉aut = 𝑉 𝑢 solve Bellman equation (1.3).
Equations (1.3) and (1.4) form the basis for an iterative algorithm for computing 𝑉 𝑢 = 𝑉aut.

• Let 𝑉 𝑢
𝑗 be the estimate of 𝑉aut at the 𝑗th iteration.

• Use this value in equation (1.4) and solve for an estimate of effort 𝑎𝑗.
• Use this value in a version of equation (1.3) with 𝑉 𝑢

𝑗 on the right side to compute 𝑉 𝑢
𝑗+1.

• Iterate to convergence.

1.2.2 Full Information

Another benchmark model helps set the stage for the model with private information that we ultimately want to study.
In this model, the unemployment agency has full information about the unemployed work.
We study optimal provision of insurance with full information.
An insurance agency can set both the consumption and search effort of an unemployed person.
The agency wants to design an unemployment insurance contract to give the unemployed worker expected discounted
utility 𝑉 > 𝑉aut.

6 Chapter 1. Optimal Unemployment Insurance

Advanced Dynamic Programming

The planner wants to deliver value 𝑉 efficiently, meaning in a way that minimizes expected discounted cost, using 𝛽 as
the discount factor.
We formulate the optimal insurance problem recursively.
Let 𝐶(𝑉) be the expected discounted cost of giving the worker expected discounted utility 𝑉 .
The cost function is strictly convex because a higher 𝑉 implies a lower marginal utility of the worker; that is, additional
expected utils can be awarded to the worker only at an increasing marginal cost in terms of the consumption good.
Given 𝑉 , the planner assigns first-period pair (𝑐, 𝑎) and promised continuation value 𝑉 𝑢, should the worker be unlucky
and not find a job.
(𝑐, 𝑎, 𝑉 𝑢) are chosen to be functions of 𝑉 and to satisfy the Bellman equation

𝐶(𝑉) = min
𝑐,𝑎,𝑉 𝑢

{𝑐 + 𝛽[1 − 𝑝(𝑎)]𝐶(𝑉 𝑢)}, (1.5)

where minimization is subject to the promise-keeping constraint

𝑉 ≤ 𝑢(𝑐) − 𝑎 + 𝛽 {𝑝(𝑎)𝑉 𝑒 + [1 − 𝑝(𝑎)]𝑉 𝑢} . (1.6)

Here 𝑉 𝑒 is given by equation (1.2), which reflects the assumption that once the worker is employed, he is beyond the
reach of the unemployment insurance agency.
The right side of Bellman equation (1.5) is attained by policy functions 𝑐 = 𝑐(𝑉), 𝑎 = 𝑎(𝑉), and 𝑉 𝑢 = 𝑉 𝑢(𝑉).
The promise-keeping constraint, equation (1.6), asserts that the 3-tuple (𝑐, 𝑎, 𝑉 𝑢) attains at least 𝑉 .
Let 𝜃 be a Lagrange multiplier on constraint (1.6).
At an interior solution, the first-order conditions with respect to 𝑐, 𝑎, and 𝑉 𝑢, respectively, are

𝜃 = 1
𝑢′(𝑐) ,

𝐶(𝑉 𝑢) = 𝜃 [1
𝛽𝑝′(𝑎) − (𝑉 𝑒 − 𝑉 𝑢)] ,

𝐶′(𝑉 𝑢) = 𝜃 .

(1.7)

The envelope condition 𝐶′(𝑉) = 𝜃 and the third equation of (1.7) imply that 𝐶′(𝑉 𝑢) = 𝐶′(𝑉).
Strict convexity of 𝐶 then implies that 𝑉 𝑢 = 𝑉
Applied repeatedly over time, 𝑉 𝑢 = 𝑉 makes the continuation value remain constant during the entire spell of unem-
ployment.
The first equation of (1.7) determines 𝑐, and the second equation of (1.7) determines 𝑎, both as functions of promised
value 𝑉 .
That 𝑉 𝑢 = 𝑉 then implies that 𝑐 and 𝑎 are held constant during the unemployment spell.
Thus, the unemployed worker’s consumption 𝑐 and search effort 𝑎 are both fully smoothed during the unemployment
spell.
But the worker’s consumption is not smoothed across states of employment and unemployment unless 𝑉 = 𝑉 𝑒.

1.2. Shavell and Weiss’s Model 7

Advanced Dynamic Programming

1.2.3 Incentive Problem

The preceding efficient insurance scheme requires that the insurance agency control both 𝑐 and 𝑎.
It will not do for the insurance agency simply to announce 𝑐 and then allow the worker to choose 𝑎.
Here is why.
The agency delivers a value 𝑉 𝑢 higher than the autarky value 𝑉aut by doing two things.
It increases the unemployed worker’s consumption 𝑐 and decreases his search effort 𝑎.
But the prescribed search effort is higher than what the worker would choose if he were to be guaranteed consumption
level 𝑐 while he remains unemployed.
This follows from the first two equations of (1.7) and the fact that the insurance scheme is costly, 𝐶(𝑉 𝑢) > 0, which
imply [𝛽𝑝′(𝑎)]−1 > (𝑉 𝑒 − 𝑉 𝑢).
But look at the worker’s first-order condition (1.4) under autarky.
It implies that if search effort 𝑎 > 0, then [𝛽𝑝′(𝑎)]−1 = [𝑉 𝑒 − 𝑉 𝑢], which is inconsistent with the preceding inequality
[𝛽𝑝′(𝑎)]−1 > (𝑉 𝑒 − 𝑉 𝑢) that prevails when 𝑎 > 0 under the social insurance arrangement.
If he were free to choose 𝑎, the worker would therefore want to fulfill (1.4), either at equality so long as 𝑎 > 0, or by
setting 𝑎 = 0 otherwise.
Starting from the 𝑎 associated with the social insurance scheme, he would establish the desired equality in (1.4) by
lowering 𝑎, thereby decreasing the term [𝛽𝑝′(𝑎)]−1 (which also lowers (𝑉 𝑒 − 𝑉 𝑢) when the value of being unemployed
𝑉 𝑢 increases).
If an equality can be established before 𝑎 reaches zero, this would be the worker’s preferred search effort; otherwise the
worker would find it optimal to accept the insurance payment, set 𝑎 = 0, and never work again.
Thus, since the worker does not take the cost of the insurance scheme into account, he would choose a search effort below
the socially optimal one.
The efficient contract relies on the agency’s ability to control both the unemployed worker’s consumption and his search
effort.

1.3 Private Information

Following Shavell and Weiss (1979) [SW79] and Hopenhayn and Nicolini (1997) [HN97], now assume that the unem-
ployment insurance agency cannot observe or enforce 𝑎, though it can observe and control 𝑐.
The worker is free to choose 𝑎, which puts expression (1.4), the worker’s first-order condition under autarky, back in the
picture.

• We are assuming that the worker’s best response to the unemployment insurance arrangement is completely char-
acterized by the first-order condition (1.4), an instance of the so-called first-order approach to incentive problems.

Given a contract, the individual will choose search effort according to first-order condition (1.4).
This fact leads the insurance agency to design the unemployment insurance contract to respect this restriction.
Thus, the recursive contract design problem is now to minimize the right side of equation (1.5) subject to expression (1.6)
and the incentive constraint (1.4).
Since the restrictions (1.4) and (1.6) are not linear and generally do not define a convex set, it becomes difficult to provide
conditions under which the solution to the dynamic programming problem results in a convex function 𝐶(𝑉).

• Sometimes this complication can be handled by convexifying the constraint set through the introduction of lotteries.

8 Chapter 1. Optimal Unemployment Insurance

Advanced Dynamic Programming

• A common finding is that optimal plans do not involve lotteries, because convexity of the constraint set is a sufficient
but not necessary condition for convexity of the cost function.

• Following Hopenhayn andNicolini (1997) [HN97], we therefore proceed under the assumption that𝐶(𝑉) is strictly
convex in order to characterize the optimal solution.

Let 𝜂 be the multiplier on constraint (1.4), while 𝜃 continues to denote the multiplier on constraint (1.6).
But now we replace the weak inequality in (1.6) by an equality.
The unemployment insurance agency cannot award a higher utility than 𝑉 because that might violate an incentive-
compatibility constraint for exerting the proper search effort in earlier periods.
At an interior solution, first-order conditions with respect to 𝑐, 𝑎, and 𝑉 𝑢, respectively, are

𝜃 = 1
𝑢′(𝑐) ,

𝐶(𝑉 𝑢) = 𝜃 [1
𝛽𝑝′(𝑎) − (𝑉 𝑒 − 𝑉 𝑢)] − 𝜂 𝑝″(𝑎)

𝑝′(𝑎) (𝑉 𝑒 − 𝑉 𝑢)

= −𝜂 𝑝″(𝑎)
𝑝′(𝑎) (𝑉 𝑒 − 𝑉 𝑢) ,

𝐶′(𝑉 𝑢) = 𝜃 − 𝜂 𝑝′(𝑎)
1 − 𝑝(𝑎) ,

(1.8)

where the second equality in the second equation in (1.8) follows from strict equality of the incentive constraint (1.4)
when 𝑎 > 0.
As long as the insurance scheme is associated with costs, so that 𝐶(𝑉 𝑢) > 0, first-order condition in the second equation
of (1.8) implies that the multiplier 𝜂 is strictly positive.
The first-order condition in the second equation of the third equality in (1.8) and the envelope condition 𝐶′(𝑉) = 𝜃
together allow us to conclude that 𝐶′(𝑉 𝑢) < 𝐶′(𝑉).
Convexity of 𝐶 then implies that 𝑉 𝑢 < 𝑉 .
After we have also used the first equation of (1.8), it follows that in order to provide the proper incentives, the consumption
of the unemployed worker must decrease as the duration of the unemployment spell lengthens.
It also follows from (1.4) at equality that search effort 𝑎 rises as 𝑉 𝑢 falls, i.e., it rises with the duration of unemployment.
The duration dependence of benefits is designed to provide incentives to search.
To see this, from the third equation of (1.8), notice how the conclusion that consumption falls with the duration of
unemployment depends on the assumption that more search effort raises the prospect of finding a job, i.e., that 𝑝′(𝑎) > 0.
If 𝑝′(𝑎) = 0, then the third equation of (1.8) and the strict convexity of 𝐶 imply that 𝑉 𝑢 = 𝑉 .
Thus, when 𝑝′(𝑎) = 0, there is no reason for the planner to make consumption fall with the duration of unemployment.

1.3.1 Computational Details

It is useful to note that there are natural lower and upper bounds to the set of continuation values 𝑉 𝑢.
The lower bound is the expected lifetime utility in autarky, 𝑉aut.
To compute the upper bound, represent condition (1.4) as

𝑉 𝑢 ≥ 𝑉 𝑒 − [𝛽𝑝′(𝑎)]−1,

with equality if 𝑎 > 0.
If there is zero search effort, then 𝑉 𝑢 ≥ 𝑉 𝑒 − [𝛽𝑝′(0)]−1.

1.3. Private Information 9

Advanced Dynamic Programming

Therefore, to rule out zero search effort we require

𝑉 𝑢 < 𝑉 𝑒 − [𝛽𝑝′(0)]−1.

(Remember that 𝑝″(𝑎) < 0.)
This step gives our upper bound for 𝑉 𝑢.
To formulate the Bellman equation numerically, we suggest using the constraints to eliminate 𝑐 and 𝑎 as choice variables,
thereby reducing the Bellman equation to a minimization over the one choice variable 𝑉 𝑢.
First express the promise-keeping constraint (1.6) at equality as

𝑢(𝑐) = 𝑉 + 𝑎 − 𝛽{𝑝(𝑎)𝑉 𝑒 + [1 − 𝑝(𝑎)]𝑉 𝑢}

so that consumption is

𝑐 = 𝑢−1 (𝑉 + 𝑎 − 𝛽[𝑝(𝑎)𝑉 𝑒 + (1 − 𝑝(𝑎))𝑉 𝑢]) . (1.9)

Similarly, solving the inequality (1.4) for 𝑎 leads to

𝑎 = max{0, 𝑝′−1 (1
𝛽(𝑉 𝑒 − 𝑉 𝑢))} . (1.10)

When we specialize (1.10) to the functional form for 𝑝(𝑎) used by Hopenhayn and Nicolini, we obtain

𝑎 = max{0, log[𝑟𝛽(𝑉 𝑒 − 𝑉 𝑢)]
𝑟 } . (1.11)

Formulas (1.9) and (1.11) express (𝑐, 𝑎) as functions of 𝑉 and the continuation value 𝑉 𝑢.
Using these functions allows us to write the Bellman equation in 𝐶(𝑉) as

𝐶(𝑉) = min
𝑉 𝑢

{𝑐 + 𝛽[1 − 𝑝(𝑎)]𝐶(𝑉 𝑢)} (1.12)

where 𝑐 and 𝑎 are given by equations (1.9) and (1.11).

1.3.2 Python Computations

We’ll approximate the planner’s optimal cost function with cubic splines.
To do this, we’ll load some useful modules

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt

We first create a class to set up a particular parametrization.

class params_instance:

def __init__(self,
r,
β = 0.999,
σ = 0.500,
w = 100,
n_grid = 50):

(continues on next page)

10 Chapter 1. Optimal Unemployment Insurance

Advanced Dynamic Programming

(continued from previous page)

self.β,self.σ,self.w,self.r = β,σ,w,r
self.n_grid = n_grid
uw = self.w**(1-self.σ)/(1-self.σ) #Utility from consuming all wage
self.Ve = uw/(1-β)

1.3.3 Parameter Values

For the other parameters we have just loaded in the above Python code, we’ll set brate the net interest rate 𝑟 to match the
hazard rate – the probability of finding a job in one period – in US data.
In particular, we seek an 𝑟 so that in autarky p(a(r)) = 0.1, where a is the optimal search effort.
First, we create some helper functions.

The probability of finding a job given search effort, a and interest rate r.
def p(a,r):

return 1-np.exp(-r*a)

def invp_prime(x,r):
return -np.log(x/r)/r

def p_prime(a,r):
return r*np.exp(-r*a)

The utiliy function
def u(self,c):

return (c**(1-self.σ))/(1-self.σ)

def u_inv(self,x):
return ((1-self.σ)*x)**(1/(1-self.σ))

Recall that under autarky the value for an unemployed worker satisfies the Bellman equation

𝑉 𝑢 = max
𝑎

{𝑢(0) − 𝑎 + 𝛽 [𝑝𝑟(𝑎)𝑉 𝑒 + (1 − 𝑝𝑟(𝑎))𝑉 𝑢]} (1.13)

At the optimal choice of 𝑎, we have the first order condition for this problem as:

𝛽𝑝′
𝑟(𝑎)[𝑉 𝑒 − 𝑉 𝑢] ≤ 1 (1.14)

with equality when a >0.
Given an interest rate ̄𝑟, we can solve the autarky problem as follows:

1. Guess 𝑉 𝑢 ∈ ℝ+

2. Given 𝑉 𝑢, use the FOC (1.14) to calculate the implied optimal search effort 𝑎
3. Evaluate the difference between the LHS and RHS of the Bellman equation (1.13)
4. Update guess for 𝑉 𝑢 accordingly, then return to 2) and repeat until the Bellman equation is satisfied.

For a given 𝑟 and guess 𝑉 𝑢, the function Vu_error calculates the error in the Bellman equation under the optimal
search intensity.
We’ll soon use this as an input to computing 𝑉 𝑢.

1.3. Private Information 11

Advanced Dynamic Programming

The error in the Bellman equation that requires equality at
the optimal choices.
def Vu_error(self,Vu,r):

β= self.β
Ve = self.Ve

a = invp_prime(1/(β*(Ve-Vu)),r)
error = u(self,0) -a + β*(p(a,r)*Ve + (1-p(a,r))*Vu) - Vu
return error

Since the calibration exercise is to match the hazard rate under autarky to the data, we must find an interest rate 𝑟 to
match p(a,r) = 0.1.
The function below r_error calculates, for a given guess of 𝑟 the difference between the model implied equilibrium
hazard rate and 0.1.
This will be used to solve for the a calibrated 𝑟∗.

The error of our p(a^*) relative to our calibration target
def r_error(self,r):

β = self.β
Ve = self.Ve

Vu_star = sp.optimize.fsolve(Vu_error_Λ,15000,args = (r))
a_star = invp_prime(1/(β*(Ve-Vu_star)),r) # Assuming a>0
return p(a_star,r) - 0.1

Now, let us create an instance of the model with our parametrization

params = params_instance(r = 1e-2)
Create some lambda functions useful for fsolve function
Vu_error_Λ = lambda Vu,r: Vu_error(params,Vu,r)
r_error_Λ = lambda r: r_error(params,r)

We want to compute an 𝑟 that is consistent with the hazard rate 0.1 in autarky.
To do so, we will use a bisection strategy.

r_calibrated = sp.optimize.brentq(r_error_Λ,1e-10,1-1e-10)
print(f"Interest rate to match 0.1 hazard rate: r = {r_calibrated}")

Vu_aut = sp.optimize.fsolve(Vu_error_Λ,15000,args = (r_calibrated))[0]
a_aut = invp_prime(1/(params.β*(params.Ve-Vu_aut)),r_calibrated)

print(f"Check p at r: {p(a_aut,r_calibrated)}")

Interest rate to match 0.1 hazard rate: r = 0.0003431409393866592
Check p at r: 0.10000000000001996

/home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages/scipy/optimize/
↪_minpack_py.py:177: RuntimeWarning: The iteration is not making good progress,␣
↪as measured by the
improvement from the last five Jacobian evaluations.
warnings.warn(msg, RuntimeWarning)

Now that we have calibrated our interest rate 𝑟, we can continue with solving the model with private information.

12 Chapter 1. Optimal Unemployment Insurance

Advanced Dynamic Programming

1.3.4 Computation under Private Information

Our approach to solving the full model is a variant on Judd (1998) [Jud98], who uses a polynomial to approximate the
value function and a numerical optimizer to perform the optimization at each iteration.
In contrast, we will use cubic splines to interpolate across a pre-set grid of points to approximate the value function. For
further details of the Judd (1998) [Jud98] method, see [LS18], Section 5.7.
Our strategy involves finding a function𝐶(𝑉) – the expected cost of giving the worker value 𝑉 – that satisfies the Bellman
equation:

𝐶(𝑉) = min
𝑐,𝑎,𝑉 𝑢

{𝑐 + 𝛽 [1 − 𝑝(𝑎)] 𝐶(𝑉 𝑢)} (1.15)

To solve this model, notice that in equations (1.9) and (1.11), we have analytical solutions of 𝑐 and 𝑎 in terms of (at most)
promised value 𝑉 and 𝑉 𝑢 (and other parameters).
We can substitute these equations for 𝑐 and 𝑎 and obtain the functional equation (1.12) that we want to solve.

def calc_c(self,Vu,V,a):
'''
Calculates the optimal consumption choice coming from the constraint of the␣

↪insurer's problem
(which is also a Bellman equation)
'''
β,Ve,r = self.β,self.Ve,self.r

c = u_inv(self,V + a - β*(p(a,r)*Ve + (1-p(a,r))*Vu))
return c

def calc_a(self,Vu):
'''
Calculates the optimal effort choice coming from the worker's effort optimality␣

↪condition.
'''

r,β,Ve = self.r,self.β,self.Ve

a_temp = np.log(r*β*(Ve - Vu))/r
a = max(0,a_temp)
return a

With these analytical solutions for optimal 𝑐 and 𝑎 in hand, we can reduce the minimization to (1.12) in the single variable
𝑉 𝑢.
With this in hand, we have our algorithm.

1.3.5 Algorithm

1. Fix a set of grid points 𝑔𝑟𝑖𝑑𝑉 for 𝑉 and 𝑉 𝑢𝑔𝑟𝑖𝑑 for 𝑉 𝑢

2. Guess a function 𝐶0(𝑉) that is evaluated at a grid 𝑔𝑟𝑖𝑑𝑉 .
3. For each point in 𝑔𝑟𝑖𝑑𝑉 find the 𝑉 𝑢 that minimizes the expression on right side of (1.12). We find the minimum

by evaluating the right side of (1.12) at each point in 𝑉 𝑢𝑔𝑟𝑖𝑑 and then finding the minimum using cubic splines.
4. Evaluating the minimum across all points in 𝑔𝑟𝑖𝑑𝑉 gives you another function 𝐶1(𝑉).
5. If 𝐶0(𝑉) and 𝐶1(𝑉) are sufficiently different, then repeat steps 3-4 again. Otherwise, we are done.
6. Thus, the iterations are 𝐶𝑗+1(𝑉) = min𝑐,𝑎,𝑉 𝑢{𝑐 − 𝛽[1 − 𝑝(𝑎)]𝐶𝑗(𝑉)}.

1.3. Private Information 13

Advanced Dynamic Programming

The function iterate_C below executes step 3 in the above algorithm.

Operator iterate_C that calculates the next iteration of the cost function.
def iterate_C(self,C_old,Vu_grid):

'''
We solve the model by minimising the value function across a grid of possible␣

↪promised values.
'''
β,r,n_grid = self.β,self.r,self.n_grid

C_new = np.zeros(n_grid)
cons_star = np.zeros(n_grid)
a_star = np.zeros(n_grid)
V_star = np.zeros(n_grid)

C_new2 = np.zeros(n_grid)
V_star2 = np.zeros(n_grid)

for V_i in range(n_grid):
C_Vi_temp = np.zeros(n_grid)
cons_Vi_temp = np.zeros(n_grid)
a_Vi_temp = np.zeros(n_grid)

for Vu_i in range(n_grid):
a_i = calc_a(self,Vu_grid[Vu_i])
c_i = calc_c(self,Vu_grid[Vu_i],Vu_grid[V_i],a_i)

C_Vi_temp[Vu_i] = c_i + β*(1-p(a_i,r))*C_old[Vu_i]
cons_Vi_temp[Vu_i] = c_i
a_Vi_temp[Vu_i] = a_i

Interpolate across the grid to get better approximation of the minimum
C_Vi_temp_interp = sp.interpolate.interp1d(Vu_grid,C_Vi_temp, kind = 'cubic')
cons_Vi_temp_interp = sp.interpolate.interp1d(Vu_grid,cons_Vi_temp, kind =

↪'cubic')
a_Vi_temp_interp = sp.interpolate.interp1d(Vu_grid,a_Vi_temp, kind = 'cubic')

res = sp.optimize.minimize_scalar(C_Vi_temp_interp,method='bounded',bounds =␣
↪(Vu_min,Vu_max))

V_star[V_i] = res.x
C_new[V_i] = res.fun

Save the associated consumpton and search policy functions as well
cons_star[V_i] = cons_Vi_temp_interp(V_star[V_i])
a_star[V_i] = a_Vi_temp_interp(V_star[V_i])

return C_new,V_star,cons_star,a_star

The below code executes steps 4 and 5 in the Algorithm until convergence to a function 𝐶∗(𝑉).

def solve_incomplete_info_model(self,Vu_grid,Vu_aut,tol = 1e-6,max_iter = 10000):
iter = 0
error = 1

C_init = np.ones(self.n_grid)*0
C_old = np.copy(C_init)

(continues on next page)

14 Chapter 1. Optimal Unemployment Insurance

Advanced Dynamic Programming

(continued from previous page)

while iter<max_iter and error >tol:
C_new,V_new,cons_star,a_star = iterate_C(self,C_old,Vu_grid)
error = np.max(np.abs(C_new - C_old))

#Only print the iterations every 50 steps
if iter % 50 ==0:

print(f"Iteration: {iter}, error:{error}")
C_old = np.copy(C_new)
iter+=1

return C_new,V_new,cons_star,a_star

1.4 Outcomes

Using the above functions, we create another instance of the parameters with the correctly calibrated interest rate, 𝑟.

##? Create another instance with the correct r now
params = params_instance(r = r_calibrated)

#Set up grid
Vu_min = Vu_aut
Vu_max = params.Ve - 1/(params.β*p_prime(0,params.r))
Vu_grid = np.linspace(Vu_min,Vu_max,params.n_grid)

#Solve model
C_star,V_star,cons_star,a_star = solve_incomplete_info_model(params,Vu_grid,Vu_aut,

↪tol = 1e-6,max_iter = 10000) #,cons_star,a_star

Since we have the policy functions in grid form, we will interpolate them to be␣
↪able to

evaluate any promised value
cons_star_interp = sp.interpolate.interp1d(Vu_grid,cons_star)
a_star_interp = sp.interpolate.interp1d(Vu_grid,a_star)
V_star_interp = sp.interpolate.interp1d(Vu_grid,V_star)

Iteration: 0, error:72.95964854907824

Iteration: 50, error:12.222761762480786

Iteration: 100, error:0.12875960366727668

Iteration: 150, error:0.0009402349710398994

Iteration: 200, error:6.115462838351959e-06

1.4. Outcomes 15

Advanced Dynamic Programming

1.4.1 Replacement Ratios and Continuation Values

We want to graph the replacement ratio (𝑐/𝑤) and search effort 𝑎 as functions of the duration of unemployment.
We’ll do this for three levels of 𝑉0, the lowest being the autarky value 𝑉aut.
We accomplish this by using the optimal policy functions V_star, cons_star and a_star computed above as well
the following iterative procedure:

Replacement ratio and effort as a function of unemployment duration
T_max = 52
Vu_t = np.empty((T_max,3))
cons_t = np.empty((T_max-1,3))
a_t = np.empty((T_max-1,3))

Calculate the replacement ratios depending on different initial
promised values
Vu_0_hold = np.array([Vu_aut,16942,17000])

for i,Vu_0, in enumerate(Vu_0_hold):
Vu_t[0,i] = Vu_0
for t in range(1,T_max):

cons_t[t-1,i] = cons_star_interp(Vu_t[t-1,i])
a_t[t-1,i] = a_star_interp(Vu_t[t-1,i])
Vu_t[t,i] = V_star_interp(Vu_t[t-1,i])

fontSize = 10
plt.rc('font', size=fontSize) # controls default text sizes
plt.rc('axes', titlesize=fontSize) # fontsize of the axes title
plt.rc('axes', labelsize=fontSize) # fontsize of the x and y labels
plt.rc('xtick', labelsize=fontSize) # fontsize of the tick labels
plt.rc('ytick', labelsize=fontSize) # fontsize of the tick labels
plt.rc('legend', fontsize=fontSize) # legend fontsize

f1 = plt.figure(figsize = (8,8))
plt.subplot(2,1,1)
plt.plot(range(T_max-1),cons_t[:,0]/params.w,label = 'V^u_0 = 16759 (aut)',color =

↪'red')
plt.plot(range(T_max-1),cons_t[:,1]/params.w,label = 'V^u_0 = 16942',color = 'blue')
plt.plot(range(T_max-1),cons_t[:,2]/params.w,label = 'V^u_0 = 17000',color = 'green

↪')
plt.ylabel("Replacement ratio (c/w)")
plt.legend()
plt.title("Optimal replacement ratio")

plt.subplot(2,1,2)
plt.plot(range(T_max-1),a_t[:,0],color = 'red')
plt.plot(range(T_max-1),a_t[:,1],color = 'blue')
plt.plot(range(T_max-1),a_t[:,2],color = 'green')
plt.ylim(0,320)
plt.ylabel("Optimal search effort (a)")
plt.xlabel("Duration of unemployment")
plt.title("Optimal search effort")
plt.show()

16 Chapter 1. Optimal Unemployment Insurance

Advanced Dynamic Programming

For an initial promised value 𝑉 𝑢 = 𝑉aut, the planner chooses the autarky level of 0 for the replacement ratio and instructs
the worker to search at the autarky search intensity, regardless of the duration of unemployment
But for 𝑉 𝑢 > 𝑉aut, the planner makes the replacement ratio decline and search effort increase with the duration of
unemployment.

1.4. Outcomes 17

Advanced Dynamic Programming

1.4.2 Interpretations

The downward slope of the replacement ratio when 𝑉 𝑢 > 𝑉aut is a consequence of the the planner’s limited information
about the worker’s search effort.
By providing the worker with a duration-dependent schedule of replacement ratios, the planner induces the worker in
effect to reveal his/her search effort to the planner.
We saw earlier that with full information, the planner would smooth consumption over an unemployment spell by keeping
the replacement ratio constant.
With private information, the planner can’t observe the worker’s search effort and therefore makes the replacement ratio
fall.
Evidently, search effort rise as the duration of unemployment increases, especially early in an unemployment spell.
There is a carrot-and-stick aspect to the replacement rate and search effort schedules:

• the carrot occurs in the forms of high compensation and low search effort early in an unemployment spell.
• the stick occurs in the low compensation and high effort later in the spell.

We shall encounter a related carrot-and-stick feature in our other lectures about dynamic programming squared.
The planner offers declining benefits and induces increased search effort as the duration of an unemployment spell rises in
order to provide an unemployed worker with proper incentives, not to punish an unlucky worker who has been unemployed
for a long time.
The planner believes that a worker who has been unemployed a long time is unlucky, not that he has done anything wrong
(i.e., has not lived up to the contract).
Indeed, the contract is designed to induce the unemployed workers to search in the way the planner expects.
The falling consumption and rising search effort of the unlucky ones with long unemployment spells are simply costs that
have to be paid in order to provide proper incentives.

18 Chapter 1. Optimal Unemployment Insurance

CHAPTER

TWO

STACKELBERG PLANS

Contents

• Stackelberg Plans

– Overview

– Duopoly

– Stackelberg Problem

– Two Bellman Equations

– Stackelberg Plan for Duopoly

– Recursive Representation of Stackelberg Plan

– Dynamic Programming and Time Consistency of Follower’s Problem

– Computing Stackelberg Plan

– Time Series for Price and Quantities

– Time Inconsistency of Stackelberg Plan

– Recursive Formulation of Follower’s Problem

– Markov Perfect Equilibrium

– Comparing Markov Perfect Equilibrium and Stackelberg Outcome

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

2.1 Overview

This lecture formulates and computes a plan that a Stackelberg leader uses to manipulate forward-looking decisions of a
Stackelberg follower that depend on continuation sequences of decisions made once and for all by the Stackelberg leader
at time 0.
To facilitate computation and interpretation, we formulate things in a context that allows us to apply dynamic programming
for linear-quadratic models.
Technically, our calculations are closely related to ones described this lecture.

19

https://dle.quantecon.org/lagrangian_lqdp.html

Advanced Dynamic Programming

From the beginning, we carry along a linear-quadratic model of duopoly in which firms face adjustment costs that make
them want to forecast actions of other firms that influence future prices.
Let’s start with some standard imports:

import numpy as np
import numpy.linalg as la
import quantecon as qe
from quantecon import LQ
import matplotlib.pyplot as plt
%matplotlib inline

2.2 Duopoly

Time is discrete and is indexed by 𝑡 = 0, 1, ….
Two firms produce a single good whose demand is governed by the linear inverse demand curve

𝑝𝑡 = 𝑎0 − 𝑎1(𝑞1𝑡 + 𝑞2𝑡)

where 𝑞𝑖𝑡 is output of firm 𝑖 at time 𝑡 and 𝑎0 and 𝑎1 are both positive.
𝑞10, 𝑞20 are given numbers that serve as initial conditions at time 0.
By incurring a cost equal to

𝛾𝑣2
𝑖𝑡, 𝛾 > 0,

firm 𝑖 can change its output according to

𝑞𝑖𝑡+1 = 𝑞𝑖𝑡 + 𝑣𝑖𝑡

Firm 𝑖’s profits at time 𝑡 equal

𝜋𝑖𝑡 = 𝑝𝑡𝑞𝑖𝑡 − 𝛾𝑣2
𝑖𝑡

Firm 𝑖 wants to maximize the present value of its profits
∞

∑
𝑡=0

𝛽𝑡𝜋𝑖𝑡

where 𝛽 ∈ (0, 1) is a time discount factor.

2.2.1 Stackelberg Leader and Follower

Each firm 𝑖 = 1, 2 chooses a sequence ⃗𝑞𝑖 ≡ {𝑞𝑖𝑡+1}∞
𝑡=0 once and for all at time 0.

We let firm 2 be a Stackelberg leader and firm 1 be a Stackelberg follower.
The leader firm 2 goes first and chooses {𝑞2𝑡+1}∞

𝑡=0 once and for all at time 0.
Knowing that firm 2 has chosen {𝑞2𝑡+1}∞

𝑡=0, the follower firm 1 goes second and chooses {𝑞1𝑡+1}∞
𝑡=0 once and for all at

time 0.
In choosing ⃗𝑞2, firm 2 takes into account that firm 1 will base its choice of ⃗𝑞1 on firm 2’s choice of ⃗𝑞2.

20 Chapter 2. Stackelberg Plans

Advanced Dynamic Programming

2.2.2 Statement of Leader’s and Follower’s Problems

We can express firm 1’s problem as

max
⃗𝑞1

Π1(⃗𝑞1; ⃗𝑞2)

where the appearance behind the semi-colon indicates that ⃗𝑞2 is given.
Firm 1’s problem induces the best response mapping

⃗𝑞1 = 𝐵(⃗𝑞2)

(Here 𝐵 maps a sequence into a sequence)
The Stackelberg leader’s problem is

max
⃗𝑞2

Π2(𝐵(⃗𝑞2), ⃗𝑞2)

whosemaximizer is a sequence ⃗𝑞2 that depends on the initial conditions 𝑞10, 𝑞20 and the parameters of the model 𝑎0, 𝑎1, 𝛾.
This formulation captures key features of the model

• Both firms make once-and-for-all choices at time 0.
• This is true even though both firms are choosing sequences of quantities that are indexed by time.
• The Stackelberg leader chooses first within time 0, knowing that the Stackelberg follower will choose second
within time 0.

While our abstract formulation reveals the timing protocol and equilibrium concept well, it obscures details that must be
addressed when we want to compute and interpret a Stackelberg plan and the follower’s best response to it.
To gain insights about these things, we study them in more detail.

2.2.3 Firms’ Problems

Firm 1 acts as if firm 2’s sequence {𝑞2𝑡+1}∞
𝑡=0 is given and beyond its control.

Firm 2 knows that firm 1 chooses second and takes this into account in choosing {𝑞2𝑡+1}∞
𝑡=0.

In the spirit of working backward, we study firm 1’s problem first, taking {𝑞2𝑡+1}∞
𝑡=0 as given.

We can formulate firm 1’s optimum problem in terms of the Lagrangian

𝐿 =
∞

∑
𝑡=0

𝛽𝑡{𝑎0𝑞1𝑡 − 𝑎1𝑞2
1𝑡 − 𝑎1𝑞1𝑡𝑞2𝑡 − 𝛾𝑣2

1𝑡 + 𝜆𝑡[𝑞1𝑡 + 𝑣1𝑡 − 𝑞1𝑡+1]}

Firm 1 seeks a maximum with respect to {𝑞1𝑡+1, 𝑣1𝑡}∞
𝑡=0 and a minimum with respect to {𝜆𝑡}∞

𝑡=0.
We approach this problem using methods described in [LS18], chapter 2, appendix A and [Sar87], chapter IX.
First-order conditions for this problem are

𝜕𝐿
𝜕𝑞1𝑡

= 𝑎0 − 2𝑎1𝑞1𝑡 − 𝑎1𝑞2𝑡 + 𝜆𝑡 − 𝛽−1𝜆𝑡−1 = 0, 𝑡 ≥ 1

𝜕𝐿
𝜕𝑣1𝑡

= −2𝛾𝑣1𝑡 + 𝜆𝑡 = 0, 𝑡 ≥ 0

2.2. Duopoly 21

Advanced Dynamic Programming

These first-order conditions and the constraint 𝑞1𝑡+1 = 𝑞1𝑡 + 𝑣1𝑡 can be rearranged to take the form

𝑣1𝑡 = 𝛽𝑣1𝑡+1 + 𝛽𝑎0
2𝛾 − 𝛽𝑎1

𝛾 𝑞1𝑡+1 − 𝛽𝑎1
2𝛾 𝑞2𝑡+1

𝑞𝑡+1 = 𝑞1𝑡 + 𝑣1𝑡

We can substitute the second equation into the first equation to obtain

(𝑞1𝑡+1 − 𝑞1𝑡) = 𝛽(𝑞1𝑡+2 − 𝑞1𝑡+1) + 𝑐0 − 𝑐1𝑞1𝑡+1 − 𝑐2𝑞2𝑡+1

where 𝑐0 = 𝛽𝑎0
2𝛾 , 𝑐1 = 𝛽𝑎1

𝛾 , 𝑐2 = 𝛽𝑎1
2𝛾 .

This equation can in turn be rearranged to become

−𝑞1𝑡 + (1 + 𝛽 + 𝑐1)𝑞1𝑡+1 − 𝛽𝑞1𝑡+2 = 𝑐0 − 𝑐2𝑞2𝑡+1 (2.1)

Equation (2.1) is a second-order difference equation in the sequence ⃗𝑞1 whose solution we want.
It satisfies two boundary conditions:

• an initial condition that 𝑞1,0, which is given

• a terminal condition requiring that lim𝑇 →+∞ 𝛽𝑇 𝑞2
1𝑡 < +∞

Using the lag operators described in [Sar87], chapter IX, difference equation (2.1) can be written as

𝛽(1 − 1 + 𝛽 + 𝑐1
𝛽 𝐿 + 𝛽−1𝐿2)𝑞1𝑡+2 = −𝑐0 + 𝑐2𝑞2𝑡+1

The polynomial in the lag operator on the left side can be factored as

(1 − 1 + 𝛽 + 𝑐1
𝛽 𝐿 + 𝛽−1𝐿2) = (1 − 𝛿1𝐿)(1 − 𝛿2𝐿) (2.2)

where 0 < 𝛿1 < 1 < 1√𝛽 < 𝛿2.

Because 𝛿2 > 1√𝛽 the operator (1−𝛿2𝐿) contributes an unstable component if solved backwards but a stable component
if solved forwards.
Mechanically, write

(1 − 𝛿2𝐿) = −𝛿2𝐿(1 − 𝛿−1
2 𝐿−1)

and compute the following inverse operator

[−𝛿2𝐿(1 − 𝛿−1
2 𝐿−1)]−1 = −𝛿2(1 − 𝛿2

−1)−1𝐿−1

Operating on both sides of equation (2.2) with 𝛽−1 times this inverse operator gives the follower’s decision rule for setting
𝑞1𝑡+1 in the feedback-feedforward form

𝑞1𝑡+1 = 𝛿1𝑞1𝑡 − 𝑐0𝛿−1
2 𝛽−1 1

1 − 𝛿−1
2

+ 𝑐2𝛿−1
2 𝛽−1

∞
∑
𝑗=0

𝛿𝑗
2𝑞2𝑡+𝑗+1, 𝑡 ≥ 0 (2.3)

The problem of the Stackelberg leader firm 2 is to choose the sequence {𝑞2𝑡+1}∞
𝑡=0 to maximize its discounted profits

∞
∑
𝑡=0

𝛽𝑡{(𝑎0 − 𝑎1(𝑞1𝑡 + 𝑞2𝑡))𝑞2𝑡 − 𝛾(𝑞2𝑡+1 − 𝑞2𝑡)2}

subject to the sequence of constraints (2.3) for 𝑡 ≥ 0.

22 Chapter 2. Stackelberg Plans

Advanced Dynamic Programming

We can put a sequence {𝜃𝑡}∞
𝑡=0 of Lagrange multipliers on the sequence of equations (2.3) and formulate the following

Lagrangian for the Stackelberg leader firm 2’s problem

�̃� =
∞

∑
𝑡=0

𝛽𝑡{(𝑎0 − 𝑎1(𝑞1𝑡 + 𝑞2𝑡))𝑞2𝑡 − 𝛾(𝑞2𝑡+1 − 𝑞2𝑡)2}

+
∞

∑
𝑡=0

𝛽𝑡𝜃𝑡{𝛿1𝑞1𝑡 − 𝑐0𝛿−1
2 𝛽−1 1

1 − 𝛿−1
2

+ 𝑐2𝛿−1
2 𝛽−1

∞
∑
𝑗=0

𝛿−𝑗
2 𝑞2𝑡+𝑗+1 − 𝑞1𝑡+1}

(2.4)

subject to initial conditions for 𝑞1𝑡, 𝑞2𝑡 at 𝑡 = 0.
Remarks: We have formulated the Stackelberg problem in a space of sequences.
The max-min problem associated with firm 2’s Lagrangian (2.4) is unpleasant because the time 𝑡 component of firm 2’s
payoff function depends on the entire future of its choices of {𝑞2𝑡+𝑗}∞

𝑗=0.
This renders a direct attack on the problem in the space of sequences cumbersome.
Therefore, below we will formulate the Stackelberg leader’s problem recursively.
We’ll proceed by putting our duopoly model into a broader class of models with the same general structure.

2.3 Stackelberg Problem

We formulate a class of linear-quadratic Stackelberg leader-follower problems of which our duopoly model is an instance.
We use the optimal linear regulator (a.k.a. the linear-quadratic dynamic programming problem described in LQDynamic
Programming problems) to represent a Stackelberg leader’s problem recursively.
Let 𝑧𝑡 be an 𝑛𝑧 × 1 vector of natural state variables.
Let 𝑥𝑡 be an 𝑛𝑥 × 1 vector of endogenous forward-looking variables that are physically free to jump at 𝑡.
In our duopoly example 𝑥𝑡 = 𝑣1𝑡, the time 𝑡 decision of the Stackelberg follower.
Let 𝑢𝑡 be a vector of decisions chosen by the Stackelberg leader at 𝑡.
The 𝑧𝑡 vector is inherited from the past.
But 𝑥𝑡 is a decision made by the Stackelberg follower at time 𝑡 that is the follower’s best response to the choice of an
entire sequence of decisions made by the Stackelberg leader at time 𝑡 = 0.
Let

𝑦𝑡 = [𝑧𝑡
𝑥𝑡

]

Represent the Stackelberg leader’s one-period loss function as

𝑟(𝑦, 𝑢) = 𝑦′𝑅𝑦 + 𝑢′𝑄𝑢

Subject to an initial condition for 𝑧0, but not for 𝑥0, the Stackelberg leader wants to maximize

−
∞

∑
𝑡=0

𝛽𝑡𝑟(𝑦𝑡, 𝑢𝑡) (2.5)

The Stackelberg leader faces the model

[𝐼 0
𝐺21 𝐺22

] [𝑧𝑡+1
𝑥𝑡+1

] = [
̂𝐴11 ̂𝐴12
̂𝐴21 ̂𝐴22

] [𝑧𝑡
𝑥𝑡

] + �̂�𝑢𝑡 (2.6)

2.3. Stackelberg Problem 23

https://python-intro.quantecon.org/lqcontrol.html
https://python-intro.quantecon.org/lqcontrol.html

Advanced Dynamic Programming

We assume that the matrix [𝐼 0
𝐺21 𝐺22

] on the left side of equation (2.6) is invertible, so that we can multiply both sides
by its inverse to obtain

[𝑧𝑡+1
𝑥𝑡+1

] = [𝐴11 𝐴12
𝐴21 𝐴22

] [𝑧𝑡
𝑥𝑡

] + 𝐵𝑢𝑡 (2.7)

or

𝑦𝑡+1 = 𝐴𝑦𝑡 + 𝐵𝑢𝑡 (2.8)

2.3.1 Interpretation of Second Block of Equations

The Stackelberg follower’s best response mapping is summarized by the second block of equations of (2.7).
In particular, these equations are the first-order conditions of the Stackelberg follower’s optimization problem (i.e., its
Euler equations).
These Euler equations summarize the forward-looking aspect of the follower’s behavior and express how its time 𝑡 decision
depends on the leader’s actions at times 𝑠 ≥ 𝑡.
When combinedwith a stability condition to be imposed below, the Euler equations summarize the follower’s best response
to the sequence of actions by the leader.
The Stackelberg leader maximizes (2.5) by choosing sequences {𝑢𝑡, 𝑥𝑡, 𝑧𝑡+1}∞

𝑡=0 subject to (2.8) and an initial condition
for 𝑧0.
Note that we have an initial condition for 𝑧0 but not for 𝑥0.
𝑥0 is among the variables to be chosen at time 0 by the Stackelberg leader.
The Stackelberg leader uses its understanding of the responses restricted by (2.8) to manipulate the follower’s decisions.

2.3.2 More Mechanical Details

For any vector 𝑎𝑡, define ⃗𝑎𝑡 = [𝑎𝑡, 𝑎𝑡+1 …].
Define a feasible set of (⃗𝑦1, �⃗�0) sequences

Ω(𝑦0) = {(⃗𝑦1, �⃗�0) ∶ 𝑦𝑡+1 = 𝐴𝑦𝑡 + 𝐵𝑢𝑡, ∀𝑡 ≥ 0}

Please remember that the follower’s system of Euler equations is embedded in the system of dynamic equations 𝑦𝑡+1 =
𝐴𝑦𝑡 + 𝐵𝑢𝑡.
Note that the definition of Ω(𝑦0) treats 𝑦0 as given.
Although it is taken as given in Ω(𝑦0), eventually, the 𝑥0 component of 𝑦0 is to be chosen by the Stackelberg leader.

2.3.3 Two Subproblems

Once again we use backward induction.
We express the Stackelberg problem in terms of two subproblems.
Subproblem 1 is solved by a continuation Stackelberg leader at each date 𝑡 ≥ 0.
Subproblem 2 is solved by the Stackelberg leader at 𝑡 = 0.
The two subproblems are designed

24 Chapter 2. Stackelberg Plans

Advanced Dynamic Programming

• to respect the timing protocol in which the follower chooses ⃗𝑞1 after seeing ⃗𝑞2 chosen by the leader
• to make the leader choose ⃗𝑞2 while respecting that ⃗𝑞1 will be the follower’s best response to ⃗𝑞2

• to represent the leader’s problem recursively by artfully choosing the leader’s state variables and the control variables
available to the leader

Subproblem 1

𝑣(𝑦0) = max
(⃗𝑦1,�⃗�0)∈Ω(𝑦0)

−
∞

∑
𝑡=0

𝛽𝑡𝑟(𝑦𝑡, 𝑢𝑡)

Subproblem 2
𝑤(𝑧0) = max

𝑥0
𝑣(𝑦0)

Subproblem 1 takes the vector of forward-looking variables 𝑥0 as given.
Subproblem 2 optimizes over 𝑥0.
The value function 𝑤(𝑧0) tells the value of the Stackelberg plan as a function of the vector of natural state variables 𝑧0 at
time 0.

2.4 Two Bellman Equations

We now describe Bellman equations for 𝑣(𝑦) and 𝑤(𝑧0).
Subproblem 1
The value function 𝑣(𝑦) in subproblem 1 satisfies the Bellman equation

𝑣(𝑦) = max
𝑢,𝑦∗

{−𝑟(𝑦, 𝑢) + 𝛽𝑣(𝑦∗)} (2.9)

where the maximization is subject to

𝑦∗ = 𝐴𝑦 + 𝐵𝑢
and 𝑦∗ denotes next period’s value.
Substituting 𝑣(𝑦) = −𝑦′𝑃 𝑦 into Bellman equation (2.9) gives

−𝑦′𝑃𝑦 = max𝑢,𝑦∗ {−𝑦′𝑅𝑦 − 𝑢′𝑄𝑢 − 𝛽𝑦∗′𝑃𝑦∗}
which as in lecture linear regulator gives rise to the algebraic matrix Riccati equation

𝑃 = 𝑅 + 𝛽𝐴′𝑃𝐴 − 𝛽2𝐴′𝑃𝐵(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃𝐴
and the optimal decision rule coefficient vector

𝐹 = 𝛽(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃𝐴
where the optimal decision rule is

𝑢𝑡 = −𝐹𝑦𝑡

Subproblem 2
We find an optimal 𝑥0 by equating to zero the gradient of 𝑣(𝑦0) with respect to 𝑥0:

−2𝑃21𝑧0 − 2𝑃22𝑥0 = 0,
which implies that

𝑥0 = −𝑃 −1
22 𝑃21𝑧0 (2.10)

2.4. Two Bellman Equations 25

https://python-intro.quantecon.org/lqcontrol.html

Advanced Dynamic Programming

2.5 Stackelberg Plan for Duopoly

Now let’s map our duopoly model into the above setup.
We formulate a state vector

𝑦𝑡 = [𝑧𝑡
𝑥𝑡

]

where for our duopoly model

𝑧𝑡 = ⎡⎢
⎣

1
𝑞2𝑡
𝑞1𝑡

⎤⎥
⎦

, 𝑥𝑡 = 𝑣1𝑡,

where 𝑥𝑡 = 𝑣1𝑡 is the time 𝑡 decision of the follower firm 1, 𝑢𝑡 is the time 𝑡 decision of the leader firm 2 and

𝑣1𝑡 = 𝑞1𝑡+1 − 𝑞1𝑡, 𝑢𝑡 = 𝑞2𝑡+1 − 𝑞2𝑡.

For our duopoly model, initial conditions for the natural state variables in 𝑧𝑡 are

𝑧0 = ⎡⎢
⎣

1
𝑞20
𝑞10

⎤⎥
⎦

while 𝑥0 = 𝑣10 = 𝑞11 − 𝑞10 is a choice variable for the Stackelberg leader firm 2, one that will ultimately be chosen
according an optimal rule prescribed by (2.10) for subproblem 2 above.
That the Stackelberg leader firm 2 chooses 𝑥0 = 𝑣10 is subtle.
Of course, 𝑥0 = 𝑣10 emerges from the feedback-feedforward solution (2.3) of firm 1’s system of Euler equations, so that
it is actually firm 1 that sets 𝑥0.
But firm 2 manipulates firm 1’s choice through firm 2’s choice of the sequence ⃗𝑞2,1 = {𝑞2𝑡+1}∞

𝑡=0.

2.5.1 Calculations to Prepare Duopoly Model

Now we’ll proceed to cast our duopoly model within the framework of the more general linear-quadratic structure de-
scribed above.
That will allow us to compute a Stackelberg plan simply by enlisting a Riccati equation to solve a linear-quadratic dynamic
program.
As emphasized above, firm 1 acts as if firm 2’s decisions {𝑞2𝑡+1, 𝑣2𝑡}∞

𝑡=0 are given and beyond its control.

2.5.2 Firm 1’s Problem

We again formulate firm 1’s optimum problem in terms of the Lagrangian

𝐿 =
∞

∑
𝑡=0

𝛽𝑡{𝑎0𝑞1𝑡 − 𝑎1𝑞2
1𝑡 − 𝑎1𝑞1𝑡𝑞2𝑡 − 𝛾𝑣2

1𝑡 + 𝜆𝑡[𝑞1𝑡 + 𝑣1𝑡 − 𝑞1𝑡+1]}

Firm 1 seeks a maximum with respect to {𝑞1𝑡+1, 𝑣1𝑡}∞
𝑡=0 and a minimum with respect to {𝜆𝑡}∞

𝑡=0.
First-order conditions for this problem are

𝜕𝐿
𝜕𝑞1𝑡

= 𝑎0 − 2𝑎1𝑞1𝑡 − 𝑎1𝑞2𝑡 + 𝜆𝑡 − 𝛽−1𝜆𝑡−1 = 0, 𝑡 ≥ 1

𝜕𝐿
𝜕𝑣1𝑡

= −2𝛾𝑣1𝑡 + 𝜆𝑡 = 0, 𝑡 ≥ 0

26 Chapter 2. Stackelberg Plans

Advanced Dynamic Programming

These first-order order conditions and the constraint 𝑞1𝑡+1 = 𝑞1𝑡 + 𝑣1𝑡 can be rearranged to take the form

𝑣1𝑡 = 𝛽𝑣1𝑡+1 + 𝛽𝑎0
2𝛾 − 𝛽𝑎1

𝛾 𝑞1𝑡+1 − 𝛽𝑎1
2𝛾 𝑞2𝑡+1

𝑞𝑡+1 = 𝑞1𝑡 + 𝑣1𝑡

We use these two equations as components of the following linear system that confronts a Stackelberg continuation leader
at time 𝑡

⎡
⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0

𝛽𝑎0
2𝛾 − 𝛽𝑎1

2𝛾 − 𝛽𝑎1
𝛾 𝛽

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

1
𝑞2𝑡+1
𝑞1𝑡+1
𝑣1𝑡+1

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

1
𝑞2𝑡
𝑞1𝑡
𝑣1𝑡

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

0
1
0
0

⎤
⎥⎥
⎦

𝑣2𝑡

Time 𝑡 revenues of firm 2 are 𝜋2𝑡 = 𝑎0𝑞2𝑡 − 𝑎1𝑞2
2𝑡 − 𝑎1𝑞1𝑡𝑞2𝑡 which evidently equal

𝑧′
𝑡𝑅1𝑧𝑡 ≡ ⎡⎢

⎣

1
𝑞2𝑡
𝑞1𝑡

⎤⎥
⎦

′

⎡⎢
⎣

0 𝑎0
2 0

𝑎0
2 −𝑎1 − 𝑎1

2
0 − 𝑎1

2 0
⎤⎥
⎦

⎡⎢
⎣

1
𝑞2𝑡
𝑞1𝑡

⎤⎥
⎦

If we set 𝑄 = 𝛾, then firm 2’s period 𝑡 profits can then be written

𝑦′
𝑡𝑅𝑦𝑡 − 𝑄𝑣2

2𝑡

where

𝑦𝑡 = [𝑧𝑡
𝑥𝑡

]

with 𝑥𝑡 = 𝑣1𝑡 and

𝑅 = [𝑅1 0
0 0]

We’ll report results of implementing this code soon.
But first, we want to represent the Stackelberg leader’s optimal choices recursively.
It is important to do this for several reasons:

• properly to interpret a representation of the Stackelberg leader’s choice as a sequence of history-dependent functions
• to formulate a recursive version of the follower’s choice problem

First, let’s get a recursive representation of the Stackelberg leader’s choice of ⃗𝑞2 for our duopoly model.

2.6 Recursive Representation of Stackelberg Plan

In order to attain an appropriate representation of the Stackelberg leader’s history-dependent plan, we will employ what
amounts to a version of the Big K, little k device often used in macroeconomics by distinguishing 𝑧𝑡, which depends
partly on decisions 𝑥𝑡 of the followers, from another vector ̌𝑧𝑡, which does not.
We will use ̌𝑧𝑡 and its history ̌𝑧𝑡 = [̌𝑧𝑡, ̌𝑧𝑡−1, … , ̌𝑧0] to describe the sequence of the Stackelberg leader’s decisions that
the Stackelberg follower takes as given.
Thus, we let ̌𝑦′

𝑡 = [̌𝑧′
𝑡 ̌𝑥′

𝑡] with initial condition ̌𝑧0 = 𝑧0 given.
That we distinguish ̌𝑧𝑡 from 𝑧𝑡 is part and parcel of the Big K, little k device in this instance.

2.6. Recursive Representation of Stackelberg Plan 27

Advanced Dynamic Programming

We have demonstrated that a Stackelberg plan for {𝑢𝑡}∞
𝑡=0 has a recursive representation

̌𝑥0 = −𝑃 −1
22 𝑃21𝑧0

𝑢𝑡 = −𝐹 ̌𝑦𝑡, 𝑡 ≥ 0
̌𝑦𝑡+1 = (𝐴 − 𝐵𝐹) ̌𝑦𝑡, 𝑡 ≥ 0

From this representation, we can deduce the sequence of functions 𝜎 = {𝜎𝑡(̌𝑧𝑡)}∞
𝑡=0 that comprise a Stackelberg plan.

For convenience, let ̌𝐴 ≡ 𝐴 − 𝐵𝐹 and partition ̌𝐴 conformably to the partition 𝑦𝑡 = [̌𝑧𝑡
̌𝑥𝑡
] as

[
̌𝐴11 ̌𝐴12
̌𝐴21 ̌𝐴22

]

Let 𝐻0
0 ≡ −𝑃 −1

22 𝑃21 so that ̌𝑥0 = 𝐻0
0 ̌𝑧0.

Then iterations on ̌𝑦𝑡+1 = ̌𝐴 ̌𝑦𝑡 starting from initial condition ̌𝑦0 = [̌𝑧0
𝐻0

0 ̌𝑧0
] imply that for 𝑡 ≥ 1

̌𝑥𝑡 =
𝑡

∑
𝑗=1

𝐻𝑡
𝑗 ̌𝑧𝑡−𝑗

where

𝐻𝑡
1 = ̌𝐴21

𝐻𝑡
2 = ̌𝐴22 ̌𝐴21
⋮ ⋮

𝐻𝑡
𝑡−1 = ̌𝐴𝑡−2

22 ̌𝐴21

𝐻𝑡
𝑡 = ̌𝐴𝑡−1

22 (̌𝐴21 + ̌𝐴22𝐻0
0)

An optimal decision rule for the Stackelberg leader’s choice of 𝑢𝑡 is

𝑢𝑡 = −𝐹 ̌𝑦𝑡 ≡ − [𝐹𝑧 𝐹𝑥] [̌𝑧𝑡
𝑥𝑡

]

or

𝑢𝑡 = −𝐹𝑧 ̌𝑧𝑡 − 𝐹𝑥
𝑡

∑
𝑗=1

𝐻𝑡
𝑗𝑧𝑡−𝑗 = 𝜎𝑡(̌𝑧𝑡) (2.11)

Representation (2.11) confirms that whenever 𝐹𝑥 ≠ 0, the typical situation, the time 𝑡 component 𝜎𝑡 of a Stackelberg
plan is history-dependent, meaning that the Stackelberg leader’s choice 𝑢𝑡 depends not just on ̌𝑧𝑡 but on components of

̌𝑧𝑡−1.

2.6.1 Comments and Interpretations

Because we set ̌𝑧0 = 𝑧0, it will turn out that 𝑧𝑡 = ̌𝑧𝑡 for all 𝑡 ≥ 0.
Then why did we distinguish ̌𝑧𝑡 from 𝑧𝑡?
The answer is that if we want to present to the Stackelberg follower a history-dependent representation of the Stackel-
berg leader’s sequence ⃗𝑞2, we must use representation (2.11) cast in terms of the history ̌𝑧𝑡 and not a corresponding
representation cast in terms of 𝑧𝑡.

28 Chapter 2. Stackelberg Plans

Advanced Dynamic Programming

2.7 Dynamic Programming and Time Consistency of Follower’s
Problem

Given the sequence ⃗𝑞2 chosen by the Stackelberg leader in our duopoly model, it turns out that the Stackelberg follower’s
problem is recursive in the natural state variables that confront a follower at any time 𝑡 ≥ 0.
This means that the follower’s plan is time consistent.
To verify these claims, we’ll formulate a recursive version of a follower’s problem that builds on our recursive represen-
tation of the Stackelberg leader’s plan and our use of the Big K, little k idea.

2.7.1 Recursive Formulation of a Follower’s Problem

We now use what amounts to another “Big𝐾, little 𝑘” trick (see rational expectations equilibrium) to formulate a recursive
version of a follower’s problem cast in terms of an ordinary Bellman equation.
Firm 1, the follower, faces {𝑞2𝑡}∞

𝑡=0 as a given quantity sequence chosen by the leader and believes that its output price
at 𝑡 satisfies

𝑝𝑡 = 𝑎0 − 𝑎1(𝑞1𝑡 + 𝑞2𝑡), 𝑡 ≥ 0

Our challenge is to represent {𝑞2𝑡}∞
𝑡=0 as a given sequence.

To do so, recall that under the Stackelberg plan, firm 2 sets output according to the 𝑞2𝑡 component of

𝑦𝑡+1 =
⎡
⎢⎢
⎣

1
𝑞2𝑡
𝑞1𝑡
𝑥𝑡

⎤
⎥⎥
⎦

which is governed by

𝑦𝑡+1 = (𝐴 − 𝐵𝐹)𝑦𝑡

To obtain a recursive representation of a {𝑞2𝑡} sequence that is exogenous to firm 1, we define a state ̃𝑦𝑡

̃𝑦𝑡 =
⎡
⎢⎢
⎣

1
𝑞2𝑡

̃𝑞1𝑡
̃𝑥𝑡

⎤
⎥⎥
⎦

that evolves according to

̃𝑦𝑡+1 = (𝐴 − 𝐵𝐹) ̃𝑦𝑡

subject to the initial condition ̃𝑞10 = 𝑞10 and ̃𝑥0 = 𝑥0 where 𝑥0 = −𝑃 −1
22 𝑃21 as stated above.

Firm 1’s state vector is

𝑋𝑡 = [̃𝑦𝑡
𝑞1𝑡

]

It follows that the follower firm 1 faces law of motion

[̃𝑦𝑡+1
𝑞1𝑡+1

] = [𝐴 − 𝐵𝐹 0
0 1] [̃𝑦𝑡

𝑞1𝑡
] + [0

1] 𝑥𝑡 (2.12)

This specification assures that from the point of the view of firm 1, 𝑞2𝑡 is an exogenous process.
Here

2.7. Dynamic Programming and Time Consistency of Follower’s Problem 29

https://python-intro.quantecon.org/rational_expectations.html

Advanced Dynamic Programming

• ̃𝑞1𝑡, ̃𝑥𝑡 play the role of Big K
• 𝑞1𝑡, 𝑥𝑡 play the role of little k

The time 𝑡 component of firm 1’s objective is

�̃�′
𝑡�̃�𝑥𝑡 − 𝑥2

𝑡 �̃� =
⎡
⎢
⎢
⎢
⎣

1
𝑞2𝑡

̃𝑞1𝑡
̃𝑥𝑡

𝑞1𝑡

⎤
⎥
⎥
⎥
⎦

′

⎡
⎢
⎢
⎢
⎣

0 0 0 0 𝑎0
2

0 0 0 0 − 𝑎1
2

0 0 0 0 0
0 0 0 0 0
𝑎0
2 − 𝑎1

2 0 0 −𝑎1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

1
𝑞2𝑡

̃𝑞1𝑡
̃𝑥𝑡

𝑞1𝑡

⎤
⎥
⎥
⎥
⎦

− 𝛾𝑥2
𝑡

Firm 1’s optimal decision rule is

𝑥𝑡 = − ̃𝐹𝑋𝑡

and its state evolves according to

�̃�𝑡+1 = (̃𝐴 − �̃� ̃𝐹)𝑋𝑡

under its optimal decision rule.
Later we shall compute ̃𝐹 and verify that when we set

𝑋0 =
⎡
⎢
⎢
⎢
⎣

1
𝑞20
𝑞10
𝑥0
𝑞10

⎤
⎥
⎥
⎥
⎦

we recover

𝑥0 = − ̃𝐹�̃�0,

which will verify that we have properly set up a recursive representation of the follower’s problem facing the Stackelberg
leader’s ⃗𝑞2.

2.7.2 Time Consistency of Follower’s Plan

The follower can solve its problem using dynamic programming because its problem is recursive in what for it are the
natural state variables, namely

⎡
⎢⎢
⎣

1
𝑞2𝑡

̃𝑞1𝑡
̃𝑥𝑡

⎤
⎥⎥
⎦

It follows that the follower’s plan is time consistent.

2.8 Computing Stackelberg Plan

Here is our code to compute a Stackelberg plan via the linear-quadratic dynamic program describe above.
Let’s use it to compute the Stackelberg plan.

30 Chapter 2. Stackelberg Plans

Advanced Dynamic Programming

Parameters
a0 = 10
a1 = 2
β = 0.96
γ = 120
n = 300
tol0 = 1e-8
tol1 = 1e-16
tol2 = 1e-2

βs = np.ones(n)
βs[1:] = β
βs = βs.cumprod()

In LQ form
Alhs = np.eye(4)

Euler equation coefficients
Alhs[3, :] = β * a0 / (2 * γ), -β * a1 / (2 * γ), -β * a1 / γ, β

Arhs = np.eye(4)
Arhs[2, 3] = 1

Alhsinv = la.inv(Alhs)

A = Alhsinv @ Arhs

B = Alhsinv @ np.array([[0, 1, 0, 0]]).T

R = np.array([[0, -a0 / 2, 0, 0],
[-a0 / 2, a1, a1 / 2, 0],
[0, a1 / 2, 0, 0],
[0, 0, 0, 0]])

Q = np.array([[γ]])

Solve using QE's LQ class
LQ solves minimization problems which is why the sign of R and Q was changed
lq = LQ(Q, R, A, B, beta=β)
P, F, d = lq.stationary_values(method='doubling')

P22 = P[3:, 3:]
P21 = P[3:, :3]
P22inv = la.inv(P22)
H_0_0 = -P22inv @ P21

Simulate forward

π_leader = np.zeros(n)

z0 = np.array([[1, 1, 1]]).T
x0 = H_0_0 @ z0
y0 = np.vstack((z0, x0))

yt, ut = lq.compute_sequence(y0, ts_length=n)[:2]

(continues on next page)

2.8. Computing Stackelberg Plan 31

Advanced Dynamic Programming

(continued from previous page)

π_matrix = (R + F. T @ Q @ F)

for t in range(n):
π_leader[t] = -(yt[:, t].T @ π_matrix @ yt[:, t])

Display policies
print("Computed policy for Continuation Stackelberg leader\n")
print(f"F = {F}")

Computed policy for Continuation Stackelberg leader

F = [[-1.58004454 0.29461313 0.67480938 6.53970594]]

2.9 Time Series for Price and Quantities

Now let’s use the code to compute and display outcomes as a Stackelberg plan unfolds.
The following code plots quantities chosen by the Stackelberg leader and follower, together with the equilibrium output
price.

q_leader = yt[1, :-1]
q_follower = yt[2, :-1]
q = q_leader + q_follower # Total output, Stackelberg
p = a0 - a1 * q # Price, Stackelberg

fig, ax = plt.subplots(figsize=(9, 5.8))
ax.plot(range(n), q_leader, 'b-', lw=2, label='leader output')
ax.plot(range(n), q_follower, 'r-', lw=2, label='follower output')
ax.plot(range(n), p, 'g-', lw=2, label='price')
ax.set_title('Output and prices, Stackelberg duopoly')
ax.legend(frameon=False)
ax.set_xlabel('t')
plt.show()

32 Chapter 2. Stackelberg Plans

Advanced Dynamic Programming

2.9.1 Value of Stackelberg Leader

We’ll compute the value 𝑤(𝑥0) attained by the Stackelberg leader, where 𝑥0 is given by the maximizer (2.10) of subprob-
lem 2.
We’ll compute it two ways and get the same answer.
In addition to being a useful check on the accuracy of our coding, computing things in these two ways helps us think about
the structure of the problem.

v_leader_forward = np.sum(βs * π_leader)
v_leader_direct = -yt[:, 0].T @ P @ yt[:, 0]

Display values
print("Computed values for the Stackelberg leader at t=0:\n")
print(f"v_leader_forward(forward sim) = {v_leader_forward:.4f}")
print(f"v_leader_direct (direct) = {v_leader_direct:.4f}")

Computed values for the Stackelberg leader at t=0:

v_leader_forward(forward sim) = 150.0316
v_leader_direct (direct) = 150.0324

2.9. Time Series for Price and Quantities 33

Advanced Dynamic Programming

Manually checks whether P is approximately a fixed point
P_next = (R + F.T @ Q @ F + β * (A - B @ F).T @ P @ (A - B @ F))
(P - P_next < tol0).all()

True

Manually checks whether two different ways of computing the
value function give approximately the same answer
v_expanded = -((y0.T @ R @ y0 + ut[:, 0].T @ Q @ ut[:, 0] +

β * (y0.T @ (A - B @ F).T @ P @ (A - B @ F) @ y0)))
(v_leader_direct - v_expanded < tol0)[0, 0]

True

2.10 Time Inconsistency of Stackelberg Plan

In the code below we compare two values
• the continuation value 𝑣(𝑦𝑡) = −𝑦′

𝑡𝑃𝑦𝑡 earned by a continuation Stackelberg leader who inherits state 𝑦𝑡 at 𝑡
• the value 𝑤(̂𝑥𝑡) of a reborn Stackelberg leader who, at date 𝑡 along the Stackelberg plan, inherits state 𝑧𝑡 at 𝑡 but
who discards 𝑥𝑡 from the time 𝑡 continuation of the original Stackelberg plan and resets it to ̂𝑥𝑡 = −𝑃 −1

22 𝑃21𝑧𝑡

The difference between these two values is a tell-tale sign of the time inconsistency of the Stackelberg plan

Compute value function over time with a reset at time t
vt_leader = np.zeros(n)
vt_reset_leader = np.empty_like(vt_leader)

yt_reset = yt.copy()
yt_reset[-1, :] = (H_0_0 @ yt[:3, :])

for t in range(n):
vt_leader[t] = -yt[:, t].T @ P @ yt[:, t]
vt_reset_leader[t] = -yt_reset[:, t].T @ P @ yt_reset[:, t]

fig, axes = plt.subplots(3, 1, figsize=(10, 7))

axes[0].plot(range(n+1), (- F @ yt).flatten(), 'bo',
label='Stackelberg leader', ms=2)

axes[0].plot(range(n+1), (- F @ yt_reset).flatten(), 'ro',
label='reborn at t Stackelberg leader', ms=2)

axes[0].set(title=r' $u_{t} = q_{2t+1} - q_t$', xlabel='t')
axes[0].legend()

axes[1].plot(range(n+1), yt[3, :], 'bo', ms=2)
axes[1].plot(range(n+1), yt_reset[3, :], 'ro', ms=2)
axes[1].set(title=r' $x_{t} = q_{1t+1} - q_{1t}$', xlabel='t')

axes[2].plot(range(n), vt_leader, 'bo', ms=2)
axes[2].plot(range(n), vt_reset_leader, 'ro', ms=2)
axes[2].set(title=r'$v(y_{t})$ and $w(\hat x_t)$', xlabel='t')

(continues on next page)

34 Chapter 2. Stackelberg Plans

Advanced Dynamic Programming

(continued from previous page)

plt.tight_layout()
plt.show()

The figure above shows
• in the third panel that for 𝑡 ≥ 1 the reborn at 𝑡 Stackelberg leader’s’s value 𝑤(̂𝑥0) exceeds the continuation value

𝑣(𝑦𝑡) of the time 0 Stackelberg leader
• in the first panel that for 𝑡 ≥ 1 the reborn at 𝑡 Stackelberg leader wants to reduce his output below that prescribed
by the time 0 Stackelberg leader

• in the second panel that for 𝑡 ≥ 1 the reborn at 𝑡 Stackelberg leader wants to increase the output of the follower
firm 2 below that prescribed by the time 0 Stackelberg leader

Taken together, these outcomes express the time inconsistency of the original time 0 Stackelberg leaders’s plan.

2.11 Recursive Formulation of Follower’s Problem

We now formulate and compute the recursive version of the follower’s problem.
We check that the recursive Big 𝐾 , little 𝑘 formulation of the follower’s problem produces the same output path ⃗𝑞1 that
we computed when we solved the Stackelberg problem

A_tilde = np.eye(5)
A_tilde[:4, :4] = A - B @ F

(continues on next page)

2.11. Recursive Formulation of Follower’s Problem 35

Advanced Dynamic Programming

(continued from previous page)

R_tilde = np.array([[0, 0, 0, 0, -a0 / 2],
[0, 0, 0, 0, a1 / 2],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[-a0 / 2, a1 / 2, 0, 0, a1]])

Q_tilde = Q
B_tilde = np.array([[0, 0, 0, 0, 1]]).T

lq_tilde = LQ(Q_tilde, R_tilde, A_tilde, B_tilde, beta=β)
P_tilde, F_tilde, d_tilde = lq_tilde.stationary_values(method='doubling')

y0_tilde = np.vstack((y0, y0[2]))
yt_tilde = lq_tilde.compute_sequence(y0_tilde, ts_length=n)[0]

Checks that the recursive formulation of the follower's problem gives
the same solution as the original Stackelberg problem
fig, ax = plt.subplots()
ax.plot(yt_tilde[4], 'r', label="q_tilde")
ax.plot(yt_tilde[2], 'b', label="q")
ax.legend()
plt.show()

Note: Variables with _tilde are obtained from solving the follower’s problem – those without are from the Stackelberg
problem

36 Chapter 2. Stackelberg Plans

Advanced Dynamic Programming

Maximum absolute difference in quantities over time between
the first and second solution methods
np.max(np.abs(yt_tilde[4] - yt_tilde[2]))

4.440892098500626e-16

x0 == x0_tilde
yt[:, 0][-1] - (yt_tilde[:, 1] - yt_tilde[:, 0])[-1] < tol0

True

2.11.1 Explanation of Alignment

If we inspect coefficients in the decision rule − ̃𝐹 , we should be able to spot why the follower chooses to set 𝑥𝑡 = ̃𝑥𝑡 when
it sets 𝑥𝑡 = − ̃𝐹𝑋𝑡 in the recursive formulation of the follower problem.

Can you spot what features of ̃𝐹 imply this?

Hint: Remember the components of 𝑋𝑡

Policy function in the follower's problem
F_tilde.round(4)

array([[0. , -0. , -0.1032, -1. , 0.1032]])

Value function in the Stackelberg problem
P

array([[963.54083615, -194.60534465, -511.62197962, -5258.22585724],
[-194.60534465, 37.3535753 , 81.97712513, 784.76471234],
[-511.62197962, 81.97712513, 247.34333344, 2517.05126111],
[-5258.22585724, 784.76471234, 2517.05126111, 25556.16504097]])

Value function in the follower's problem
P_tilde

array([[-1.81991134e+01, 2.58003020e+00, 1.56048755e+01,
1.51229815e+02, -5.00000000e+00],

[2.58003020e+00, -9.69465925e-01, -5.26007958e+00,
-5.09764310e+01, 1.00000000e+00],

[1.56048755e+01, -5.26007958e+00, -3.22759027e+01,
-3.12791908e+02, -1.23823802e+01],

[1.51229815e+02, -5.09764310e+01, -3.12791908e+02,
-3.03132584e+03, -1.20000000e+02],

[-5.00000000e+00, 1.00000000e+00, -1.23823802e+01,
-1.20000000e+02, 1.43823802e+01]])

2.11. Recursive Formulation of Follower’s Problem 37

Advanced Dynamic Programming

Manually check that P is an approximate fixed point
(P - ((R + F.T @ Q @ F) + β * (A - B @ F).T @ P @ (A - B @ F)) < tol0).all()

True

Compute `P_guess` using `F_tilde_star`
F_tilde_star = -np.array([[0, 0, 0, 1, 0]])
P_guess = np.zeros((5, 5))

for i in range(1000):
P_guess = ((R_tilde + F_tilde_star.T @ Q @ F_tilde_star) +

β * (A_tilde - B_tilde @ F_tilde_star).T @ P_guess
@ (A_tilde - B_tilde @ F_tilde_star))

Value function in the follower's problem
-(y0_tilde.T @ P_tilde @ y0_tilde)[0, 0]

112.65590740578115

Value function with `P_guess`
-(y0_tilde.T @ P_guess @ y0_tilde)[0, 0]

112.65590740578136

Compute policy using policy iteration algorithm
F_iter = (β * la.inv(Q + β * B_tilde.T @ P_guess @ B_tilde)

@ B_tilde.T @ P_guess @ A_tilde)

for i in range(100):
Compute P_iter
P_iter = np.zeros((5, 5))
for j in range(1000):

P_iter = ((R_tilde + F_iter.T @ Q @ F_iter) + β
* (A_tilde - B_tilde @ F_iter).T @ P_iter
@ (A_tilde - B_tilde @ F_iter))

Update F_iter
F_iter = (β * la.inv(Q + β * B_tilde.T @ P_iter @ B_tilde)

@ B_tilde.T @ P_iter @ A_tilde)

dist_vec = (P_iter - ((R_tilde + F_iter.T @ Q @ F_iter)
+ β * (A_tilde - B_tilde @ F_iter).T @ P_iter
@ (A_tilde - B_tilde @ F_iter)))

if np.max(np.abs(dist_vec)) < 1e-8:
dist_vec2 = (F_iter - (β * la.inv(Q + β * B_tilde.T @ P_iter @ B_tilde)

@ B_tilde.T @ P_iter @ A_tilde))

if np.max(np.abs(dist_vec2)) < 1e-8:
F_iter

else:
print("The policy didn't converge: try increasing the number of \

(continues on next page)

38 Chapter 2. Stackelberg Plans

Advanced Dynamic Programming

(continued from previous page)

outer loop iterations")
else:

print("`P_iter` didn't converge: try increasing the number of inner \
loop iterations")

Simulate the system using `F_tilde_star` and check that it gives the
same result as the original solution

yt_tilde_star = np.zeros((n, 5))
yt_tilde_star[0, :] = y0_tilde.flatten()

for t in range(n-1):
yt_tilde_star[t+1, :] = (A_tilde - B_tilde @ F_tilde_star) \

@ yt_tilde_star[t, :]

fig, ax = plt.subplots()
ax.plot(yt_tilde_star[:, 4], 'r', label="q_tilde")
ax.plot(yt_tilde[2], 'b', label="q")
ax.legend()
plt.show()

Maximum absolute difference
np.max(np.abs(yt_tilde_star[:, 4] - yt_tilde[2, :-1]))

0.0

2.11. Recursive Formulation of Follower’s Problem 39

Advanced Dynamic Programming

2.12 Markov Perfect Equilibrium

The state vector is

𝑧𝑡 = ⎡⎢
⎣

1
𝑞2𝑡
𝑞1𝑡

⎤⎥
⎦

and the state transition dynamics are

𝑧𝑡+1 = 𝐴𝑧𝑡 + 𝐵1𝑣1𝑡 + 𝐵2𝑣2𝑡

where 𝐴 is a 3 × 3 identity matrix and

𝐵1 = ⎡⎢
⎣

0
0
1
⎤⎥
⎦

, 𝐵2 = ⎡⎢
⎣

0
1
0
⎤⎥
⎦

The Markov perfect decision rules are

𝑣1𝑡 = −𝐹1𝑧𝑡, 𝑣2𝑡 = −𝐹2𝑧𝑡

and in the Markov perfect equilibrium, the state evolves according to

𝑧𝑡+1 = (𝐴 − 𝐵1𝐹1 − 𝐵2𝐹2)𝑧𝑡

In LQ form
A = np.eye(3)
B1 = np.array([[0], [0], [1]])
B2 = np.array([[0], [1], [0]])

R1 = np.array([[0, 0, -a0 / 2],
[0, 0, a1 / 2],
[-a0 / 2, a1 / 2, a1]])

R2 = np.array([[0, -a0 / 2, 0],
[-a0 / 2, a1, a1 / 2],
[0, a1 / 2, 0]])

Q1 = Q2 = γ
S1 = S2 = W1 = W2 = M1 = M2 = 0.0

Solve using QE's nnash function
F1, F2, P1, P2 = qe.nnash(A, B1, B2, R1, R2, Q1,

Q2, S1, S2, W1, W2, M1,
M2, beta=β, tol=tol1)

Simulate forward
AF = A - B1 @ F1 - B2 @ F2
z = np.empty((3, n))
z[:, 0] = 1, 1, 1
for t in range(n-1):

z[:, t+1] = AF @ z[:, t]

Display policies
print("Computed policies for firm 1 and firm 2:\n")
print(f"F1 = {F1}")
print(f"F2 = {F2}")

40 Chapter 2. Stackelberg Plans

Advanced Dynamic Programming

Computed policies for firm 1 and firm 2:

F1 = [[-0.22701363 0.03129874 0.09447113]]
F2 = [[-0.22701363 0.09447113 0.03129874]]

q1 = z[1, :]
q2 = z[2, :]
q = q1 + q2 # Total output, MPE
p = a0 - a1 * q # Price, MPE

fig, ax = plt.subplots(figsize=(9, 5.8))
ax.plot(range(n), q, 'b-', lw=2, label='total output')
ax.plot(range(n), p, 'g-', lw=2, label='price')
ax.set_title('Output and prices, duopoly MPE')
ax.legend(frameon=False)
ax.set_xlabel('t')
plt.show()

Computes the maximum difference between the two quantities of the two firms
np.max(np.abs(q1 - q2))

8.881784197001252e-16

2.12. Markov Perfect Equilibrium 41

Advanced Dynamic Programming

Compute values
u1 = (- F1 @ z).flatten()
u2 = (- F2 @ z).flatten()

π_1 = p * q1 - γ * (u1) ** 2
π_2 = p * q2 - γ * (u2) ** 2

v1_forward = np.sum(βs * π_1)
v2_forward = np.sum(βs * π_2)

v1_direct = (- z[:, 0].T @ P1 @ z[:, 0])
v2_direct = (- z[:, 0].T @ P2 @ z[:, 0])

Display values
print("Computed values for firm 1 and firm 2:\n")
print(f"v1(forward sim) = {v1_forward:.4f}; v1 (direct) = {v1_direct:.4f}")
print(f"v2 (forward sim) = {v2_forward:.4f}; v2 (direct) = {v2_direct:.4f}")

Computed values for firm 1 and firm 2:

v1(forward sim) = 133.3303; v1 (direct) = 133.3296
v2 (forward sim) = 133.3303; v2 (direct) = 133.3296

Sanity check
Λ1 = A - B2 @ F2
lq1 = qe.LQ(Q1, R1, Λ1, B1, beta=β)
P1_ih, F1_ih, d = lq1.stationary_values()

v2_direct_alt = - z[:, 0].T @ lq1.P @ z[:, 0] + lq1.d

(np.abs(v2_direct - v2_direct_alt) < tol2).all()

True

2.13 Comparing Markov Perfect Equilibrium and Stackelberg Out-
come

It is enlightening to compare equilbrium values for firms 1 and 2 under two alternative settings:
• A Markov perfect equilibrium like that described in this lecture
• A Stackelberg equilbrium

The following code performs the required computations, then plots the continuation values.

vt_MPE = np.zeros(n)
vt_follower = np.zeros(n)

for t in range(n):
vt_MPE[t] = -z[:, t].T @ P1 @ z[:, t]
vt_follower[t] = -yt_tilde[:, t].T @ P_tilde @ yt_tilde[:, t]

(continues on next page)

42 Chapter 2. Stackelberg Plans

https://eqm.quantecon.org/markov_perf.html

Advanced Dynamic Programming

(continued from previous page)

fig, ax = plt.subplots()
ax.plot(vt_MPE, 'b', label='MPE')
ax.plot(vt_leader, 'r', label='Stackelberg leader')
ax.plot(vt_follower, 'g', label='Stackelberg follower')
ax.set_title(r'Values for MPE duopolists and Stackelberg firms')
ax.set_xlabel('t')
ax.legend(loc=(1.05, 0))
plt.show()

Display values
print("Computed values:\n")
print(f"vt_leader(y0) = {vt_leader[0]:.4f}")
print(f"vt_follower(y0) = {vt_follower[0]:.4f}")
print(f"vt_MPE(y0) = {vt_MPE[0]:.4f}")

Computed values:

vt_leader(y0) = 150.0324
vt_follower(y0) = 112.6559
vt_MPE(y0) = 133.3296

Compute the difference in total value between the Stackelberg and the MPE
vt_leader[0] + vt_follower[0] - 2 * vt_MPE[0]

-3.9709425620890784

2.13. Comparing Markov Perfect Equilibrium and Stackelberg Outcome 43

Advanced Dynamic Programming

44 Chapter 2. Stackelberg Plans

CHAPTER

THREE

RAMSEY PLANS, TIME INCONSISTENCY, SUSTAINABLE PLANS

Contents

• Ramsey Plans, Time Inconsistency, Sustainable Plans

– Overview

– The Model

– Structure

– Intertemporal Structure

– Four Models of Government Policy

– A Ramsey Planner

– A Constrained-to-a-Constant-Growth-Rate Ramsey Government

– Markov Perfect Governments

– Outcomes under Three Timing Protocols

– A Fourth Model of Government Decision Making

– Sustainable or Credible Plan

– Whose Credible Plan is it?

– Comparison of Equilibrium Values

– Note on Dynamic Programming Squared

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

45

Advanced Dynamic Programming

3.1 Overview

This lecture describes a linear-quadratic version of a model that Guillermo Calvo [Cal78] used to illustrate the time
inconsistency of optimal government plans.
Like Chang [Cha98], we use the model as a laboratory in which to explore the consequences of different timing protocols
for government decision making.
The model focuses attention on intertemporal tradeoffs between

• welfare benefits that anticipated deflation generates by increasing a representative agent’s liquidity as measured by
his or her real money balances, and

• costs associated with distorting taxes that must be used to withdraw money from the economy in order to generate
anticipated deflation

The model features
• rational expectations
• costly government actions at all dates 𝑡 ≥ 1 that increase household utilities at dates before 𝑡
• two Bellman equations, one that expresses the private sector’s expectation of future inflation as a function of current
and future government actions, another that describes the value function of a Ramsey planner

A theme of this lecture is that timing protocols affect outcomes.
We’ll use ideas from papers by Cagan [Cag56], Calvo [Cal78], Stokey [Sto89], [Sto91], Chari and Kehoe [CK90], Chang
[Cha98], and Abreu [Abr88] as well as from chapter 19 of [LS18].
In addition, we’ll use ideas from linear-quadratic dynamic programming described in Linear Quadratic Control as applied
to Ramsey problems in Stackelberg problems.
We specify the model in a way that allows us to use linear-quadratic dynamic programming to compute an optimal
government plan under a timing protocol in which a government chooses an infinite sequence of money supply growth
rates once and for all at time 0.
We’ll start with some imports:

import numpy as np
from quantecon import LQ
import matplotlib.pyplot as plt
%matplotlib inline

3.2 The Model

There is no uncertainty.
Let:

• 𝑝𝑡 be the log of the price level
• 𝑚𝑡 be the log of nominal money balances
• 𝜃𝑡 = 𝑝𝑡+1 − 𝑝𝑡 be the net rate of inflation between 𝑡 and 𝑡 + 1
• 𝜇𝑡 = 𝑚𝑡+1 − 𝑚𝑡 be the net rate of growth of nominal balances

The demand for real balances is governed by a perfect foresight version of the Cagan [Cag56] demand function:

𝑚𝑡 − 𝑝𝑡 = −𝛼(𝑝𝑡+1 − 𝑝𝑡) , 𝛼 > 0 (3.1)

46 Chapter 3. Ramsey Plans, Time Inconsistency, Sustainable Plans

https://python-intro.quantecon.org/lqcontrol.html

Advanced Dynamic Programming

for 𝑡 ≥ 0.
Equation (3.1) asserts that the demand for real balances is inversely related to the public’s expected rate of inflation, which
here equals the actual rate of inflation.
(When there is no uncertainty, an assumption of rational expectations implies perfect foresight).
(See [Sar77] for a rational expectations version of the model when there is uncertainty.)
Subtracting the demand function at time 𝑡 from the demand function at 𝑡 + 1 gives:

𝜇𝑡 − 𝜃𝑡 = −𝛼𝜃𝑡+1 + 𝛼𝜃𝑡

or

𝜃𝑡 = 𝛼
1 + 𝛼𝜃𝑡+1 + 1

1 + 𝛼𝜇𝑡 (3.2)

Because 𝛼 > 0, 0 < 𝛼
1+𝛼 < 1.

Definition: For a scalar 𝑏𝑡, let 𝐿2 be the space of sequences {𝑏𝑡}∞
𝑡=0 satisfying

∞
∑
𝑡=0

𝑏2
𝑡 < +∞

We say that a sequence that belongs to 𝐿2 is square summable.
When we assume that the sequence ⃗𝜇 = {𝜇𝑡}∞

𝑡=0 is square summable and we require that the sequence ⃗𝜃 = {𝜃𝑡}∞
𝑡=0 is

square summable, the linear difference equation (3.2) can be solved forward to get:

𝜃𝑡 = 1
1 + 𝛼

∞
∑
𝑗=0

(𝛼
1 + 𝛼)

𝑗
𝜇𝑡+𝑗 (3.3)

Insight: In the spirit of Chang [Cha98], note that equations (3.1) and (3.3) show that 𝜃𝑡 intermediates how choices of
𝜇𝑡+𝑗, 𝑗 = 0, 1, … impinge on time 𝑡 real balances 𝑚𝑡 − 𝑝𝑡 = −𝛼𝜃𝑡.
We shall use this insight to help us simplify and analyze government policy problems.
That future rates of money creation influence earlier rates of inflation creates optimal government policy problems in
which timing protocols matter.
We can rewrite the model as:

[1
𝜃𝑡+1

] = [1 0
0 1+𝛼

𝛼
] [1

𝜃𝑡
] + [0

− 1
𝛼

] 𝜇𝑡

or

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝜇𝑡 (3.4)

We write the model in the state-space form (3.4) even though 𝜃0 is to be determined by our model and so is not an initial
condition, as it ordinarily would be in the state-space model described in our lecture on Linear Quadratic Control.
We write the model in the form (3.4) because we want to apply an approach described in our lecture on Stackelberg
problems.
We assume that a government believes that a representative household’s utility of real balances at time 𝑡 is:

𝑈(𝑚𝑡 − 𝑝𝑡) = 𝑎0 + 𝑎1(𝑚𝑡 − 𝑝𝑡) − 𝑎2
2 (𝑚𝑡 − 𝑝𝑡)2, 𝑎0 > 0, 𝑎1 > 0, 𝑎2 > 0 (3.5)

The “bliss level” of real balances is then 𝑎1
𝑎2
.

3.2. The Model 47

https://python-intro.quantecon.org/lqcontrol.html

Advanced Dynamic Programming

The money demand function (3.1) and the utility function (3.5) imply that utility maximizing or bliss level of real balances
is attained when:

𝜃𝑡 = 𝜃∗ = − 𝑎1
𝑎2𝛼

Below, we introduce the discount factor 𝛽 ∈ (0, 1) that a government uses to discount its future utilities.
(If we set parameters so that 𝜃∗ = log(𝛽), then we can regard a recommendation to set 𝜃𝑡 = 𝜃∗ as a “poor man’s Friedman
rule” that attains Milton Friedman’s optimal quantity of money.)
Via equation (3.3), a government plan ⃗𝜇 = {𝜇𝑡}∞

𝑡=0 leads to a sequence of inflation outcomes ⃗𝜃 = {𝜃𝑡}∞
𝑡=0.

We assume that social costs 𝑐
2 𝜇2

𝑡 are incurred at 𝑡 when the government changes the stock of nominal money balances at
rate 𝜇𝑡.
Therefore, the one-period welfare function of a benevolent government is:

−𝑠(𝜃𝑡, 𝜇𝑡) ≡ −𝑟(𝑥𝑡, 𝜇𝑡) = [1
𝜃𝑡

]
′
[𝑎0 − 𝑎1𝛼

2
− 𝑎1𝛼

2 − 𝑎2𝛼2

2
] [1

𝜃𝑡
] − 𝑐

2𝜇2
𝑡 = −𝑥′

𝑡𝑅𝑥𝑡 − 𝑄𝜇2
𝑡 (3.6)

A benevolent government’s time 0 value is

𝑣0 = −
∞

∑
𝑡=0

𝛽𝑡𝑟(𝑥𝑡, 𝜇𝑡) = −
∞

∑
𝑡=0

𝛽𝑡𝑠(𝜃𝑡, 𝜇𝑡) (3.7)

We can represent the dependence of 𝑣0 on (⃗𝜃, ⃗𝜇) recursively via the difference equation

𝑣𝑡 = −𝑠(𝜃𝑡, 𝜇𝑡) + 𝛽𝑣𝑡+1 (3.8)

where the government’s time 𝑡 continuation value 𝑣𝑡 satisfies

𝑣𝑡 = −
∞

∑
𝑗=0

𝛽𝑗𝑠(𝜃𝑡+𝑗, 𝜇𝑡+𝑗).

3.3 Structure

The following structure is induced by private agents’ behavior as summarized by the demand function for money (3.1)
that leads to equation (3.3), which tells how future settings of 𝜇 affect the current value of 𝜃.
Equation (3.3) maps a policy sequence of money growth rates ⃗𝜇 = {𝜇𝑡}∞

𝑡=0 ∈ 𝐿2 into an inflation sequence ⃗𝜃 =
{𝜃𝑡}∞

𝑡=0 ∈ 𝐿2.
These, in turn, induce a discounted value to a government sequence ⃗𝑣 = {𝑣𝑡}∞

𝑡=0 ∈ 𝐿2 that satisfies the recursion

𝑣𝑡 = −𝑠(𝜃𝑡, 𝜇𝑡) + 𝛽𝑣𝑡+1

where we have called 𝑠(𝜃𝑡, 𝜇𝑡) = 𝑟(𝑥𝑡, 𝜇𝑡), as above.
Thus, a triple of sequences (⃗𝜇, ⃗𝜃, ⃗𝑣) depends on a sequence ⃗𝜇 ∈ 𝐿2.
At this point ⃗𝜇 ∈ 𝐿2 is an arbitrary exogenous policy.
A theory of government decisions will make ⃗𝜇 endogenous, i.e., a theoretical output instead of an input.

48 Chapter 3. Ramsey Plans, Time Inconsistency, Sustainable Plans

Advanced Dynamic Programming

3.4 Intertemporal Structure

Criterion function (3.7) and the constraint system (3.4) exhibit the following structure:
• Setting 𝜇𝑡 ≠ 0 imposes costs 𝑐

2 𝜇2
𝑡 at time 𝑡 and at no other times; but

• The money growth rate 𝜇𝑡 affects the government’s one-period utilities at all dates 𝑠 = 0, 1, … , 𝑡.
This structure sets the stage for the emergence of a time-inconsistent optimal government plan under a Ramsey timing
protocol, also called a Stackelberg timing protocol.
We’ll eventually study outcomes under a Ramsey timing protocol.
But we’ll also study the consequences of other timing protocols.

3.5 Four Models of Government Policy

We consider four models of policymakers that differ in
• what a policymaker is allowed to choose, either a sequence ⃗𝜇 or just 𝜇𝑡 in a single period 𝑡.
• when a policymaker chooses, either once and for all at time 0, or at some time or times 𝑡 ≥ 0.
• what a policymaker assumes about how its choice of 𝜇𝑡 affects private agents’ expectations about earlier and later
inflation rates.

In two of our models, a single policymaker chooses a sequence {𝜇𝑡}∞
𝑡=0 once and for all, taking into account how 𝜇𝑡

affects household one-period utilities at dates 𝑠 = 0, 1, … , 𝑡 − 1
• these two models thus employ a Ramsey or Stackelberg timing protocol.

In two other models, there is a sequence of policymakers, each of whom sets 𝜇𝑡 at one 𝑡 only.
• Each such policymaker ignores effects that its choice of 𝜇𝑡 has on household one-period utilities at dates 𝑠 =

0, 1, … , 𝑡 − 1.
The four models differ with respect to timing protocols, constraints on government choices, and government policymakers’
beliefs about how their decisions affect private agents’ beliefs about future government decisions.
The models are distinguished by having either

• A single Ramsey planner chooses a sequence {𝜇𝑡}∞
𝑡=0 once and for all at time 0; or

• A single Ramsey planner chooses a sequence {𝜇𝑡}∞
𝑡=0 once and for all at time 0 subject to the constraint that 𝜇𝑡 = 𝜇

for all 𝑡 ≥ 0; or
• A sequence of separate policymakers chooses 𝜇𝑡 for 𝑡 = 0, 1, 2, …

– a time 𝑡 policymaker chooses 𝜇𝑡 only and forecasts that future government decisions are unaffected by its
choice; or

• A sequence of separate policymakers chooses 𝜇𝑡 for 𝑡 = 0, 1, 2, …
– a time 𝑡 policymaker chooses only 𝜇𝑡 but believes that its choice of 𝜇𝑡 shapes private agents’ beliefs about
future rates of money creation and inflation, and through them, future government actions.

The relationship between outcomes in the first (Ramsey) timing protocol and the fourth timing protocol and belief structure
is the subject of a literature on sustainable or credible public policies (Chari and Kehoe [CK90] [Sto89], and Stokey
[Sto91]).
We’ll discuss that topic later in this lecture.

3.4. Intertemporal Structure 49

Advanced Dynamic Programming

3.6 A Ramsey Planner

First, we consider a Ramsey planner that chooses {𝜇𝑡, 𝜃𝑡}∞
𝑡=0 to maximize (3.7) subject to the law of motion (3.4).

We can split this problem into two stages, as in Stackelberg problems and [LS18] Chapter 19.
In the first stage, we take the initial inflation rate 𝜃0 as given, and then solve the resulting LQ dynamic programming
problem.
In the second stage, we maximize over the initial inflation rate 𝜃0.
Define a feasible set of (⃗⃗⃗𝑥1, ⃗⃗⃗𝜇0) sequences, both of which must belong to 𝐿2:

Ω(𝑥0) = {(⃗⃗ ⃗⃗𝑥1, ⃗⃗⃗𝜇0) ∶ 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝜇𝑡 , ∀𝑡 ≥ 0}

3.6.1 Subproblem 1

The value function

𝐽(𝑥0) = max
(⃗⃗ ⃗⃗𝑥1, ⃗⃗⃗ ⃗⃗𝜇0)∈Ω(𝑥0)

−
∞

∑
𝑡=0

𝛽𝑡𝑟(𝑥𝑡, 𝜇𝑡)

satisfies the Bellman equation

𝐽(𝑥) = max
𝜇,𝑥′

{−𝑟(𝑥, 𝜇) + 𝛽𝐽(𝑥′)}

subject to:

𝑥′ = 𝐴𝑥 + 𝐵𝜇

As in Stackelberg problems, we map this problem into a linear-quadratic control problem and deduce an optimal value
function 𝐽(𝑥).
Guessing that 𝐽(𝑥) = −𝑥′𝑃𝑥 and substituting into the Bellman equation gives rise to the algebraic matrix Riccati
equation:

𝑃 = 𝑅 + 𝛽𝐴′𝑃𝐴 − 𝛽2𝐴′𝑃𝐵(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃𝐴

and an optimal decision rule

𝜇𝑡 = −𝐹𝑥𝑡

where

𝐹 = 𝛽(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃𝐴

The QuantEcon LQ class solves for 𝐹 and 𝑃 given inputs 𝑄, 𝑅, 𝐴, 𝐵, and 𝛽.

3.6.2 Subproblem 2

The value of the Ramsey problem is

𝑉 = max
𝑥0

𝐽(𝑥0)

where 𝑉 is the maximum value of 𝑣0 defined in equation (3.7).

50 Chapter 3. Ramsey Plans, Time Inconsistency, Sustainable Plans

https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/lqcontrol.py

Advanced Dynamic Programming

The value function

𝐽(𝑥0) = − [1 𝜃0] [𝑃11 𝑃12
𝑃21 𝑃22

] [1
𝜃0

] = −𝑃11 − 2𝑃21𝜃0 − 𝑃22𝜃2
0

Maximizing this with respect to 𝜃0 yields the FOC:
−2𝑃21 − 2𝑃22𝜃0 = 0

which implies

𝜃∗
0 = −𝑃21

𝑃22

3.6.3 Representation of Ramsey Plan

The preceding calculations indicate that we can represent a Ramsey plan ⃗𝜇 recursively with the following system created
in the spirit of Chang [Cha98]:

𝜃0 = 𝜃∗
0

𝜇𝑡 = 𝑏0 + 𝑏1𝜃𝑡
𝜃𝑡+1 = 𝑑0 + 𝑑1𝜃𝑡

(3.9)

To interpret this system, think of the sequence {𝜃𝑡}∞
𝑡=0 as a sequence of synthetic promised inflation rates.

At this point, we can think of these promised inflation rates just as computational devices for generating a sequence ⃗𝜇 of
money growth rates that are to be substituted into equation (3.3) to form actual rates of inflation.
But it can be verified that if we substitute a plan ⃗𝜇 = {𝜇𝑡}∞

𝑡=0 that satisfies these equations into equation (3.3), we obtain
the same sequence ⃗𝜃 generated by the system (3.9).
(Here an application of the Big 𝐾, little 𝑘 trick could once again be enlightening.)
Thus, our construction of a Ramsey plan guarantees that promised inflation equals actual inflation.

3.6.4 Multiple roles of 𝜃𝑡

The inflation rate 𝜃𝑡 plays three roles simultaneously:
• In equation (3.3), 𝜃𝑡 is the actual rate of inflation between 𝑡 and 𝑡 + 1.
• In equation (3.2) and (3.3), 𝜃𝑡 is also the public’s expected rate of inflation between 𝑡 and 𝑡 + 1.
• In system (3.9), 𝜃𝑡 is a promised rate of inflation chosen by the Ramsey planner at time 0.

That the same variable 𝜃𝑡 takes on these multiple roles brings insights about commitment and forward guidance, following
versus leading the market, and dynamic or time inconsistency.

3.6.5 Time Inconsistency

As discussed in Stackelberg problems and Optimal taxation with state-contingent debt, a continuation Ramsey plan is not a
Ramsey plan.
This is a concise way of characterizing the time inconsistency of a Ramsey plan.
The time inconsistency of a Ramsey plan has motivated other models of government decision making that alter either

• the timing protocol and/or
• assumptions about how government decision makers think their decisions affect private agents’ beliefs about future
government decisions

3.6. A Ramsey Planner 51

Advanced Dynamic Programming

3.7 A Constrained-to-a-Constant-Growth-Rate Ramsey Government

We now consider a peculiar model of optimal government behavior.
We created this model in order to highlight an aspect of an optimal government policy associated with its time inconsis-
tency, namely, the feature that optimal settings of the policy instrument vary over time.
Instead of allowing the Ramsey government to choose different settings of its instrument at different moments, we now
assume that at time 0, a Ramsey government at time 0 once and for all chooses a constant sequence 𝜇𝑡 = ̌𝜇 for all 𝑡 ≥ 0
to maximize

𝑈(−𝛼 ̌𝜇) − 𝑐
2 ̌𝜇2

Here we have imposed the perfect foresight outcome implied by equation (3.2) that 𝜃𝑡 = ̌𝜇 when the government chooses
a constant 𝜇 for all 𝑡 ≥ 0.
With the quadratic form (3.5) for the utility function 𝑈 , the maximizing ̄𝜇 is

̌𝜇 = − 𝛼𝑎1
𝛼2𝑎2 + 𝑐

Summary: We have introduced the constrained-to-a-constant 𝜇 government in order to highlight time-variation of 𝜇𝑡 as
a telltale sign of time inconsistency of a Ramsey plan.

3.8 Markov Perfect Governments

We now alter the timing protocol by considering a sequence of government policymakers, the time 𝑡 representative of
which chooses 𝜇𝑡 and expects all future governments to set 𝜇𝑡+𝑗 = ̄𝜇.
This assumption mirrors an assumption made in a different setting Markov Perfect Equilibrium.
A government policymaker at 𝑡 believes that ̄𝜇 is unaffected by its choice of 𝜇𝑡.
The time 𝑡 rate of inflation is then:

𝜃𝑡 = 𝛼
1 + 𝛼 ̄𝜇 + 1

1 + 𝛼𝜇𝑡

The time 𝑡 government policymaker then chooses 𝜇𝑡 to maximize:

𝑊 = 𝑈(−𝛼𝜃𝑡) − 𝑐
2𝜇2

𝑡 + 𝛽𝑉 (̄𝜇)

where 𝑉 (̄𝜇) is the time 0 value 𝑣0 of recursion (3.8) under a money supply growth rate that is forever constant at ̄𝜇.
Substituting for 𝑈 and 𝜃𝑡 gives:

𝑊 = 𝑎0 + 𝑎1(− 𝛼2

1 + 𝛼 ̄𝜇 − 𝛼
1 + 𝛼𝜇𝑡) − 𝑎2

2 ((− 𝛼2

1 + 𝛼 ̄𝜇 − 𝛼
1 + 𝛼𝜇𝑡)2 − 𝑐

2𝜇2
𝑡 + 𝛽𝑉 (̄𝜇)

The first-order necessary condition for 𝜇𝑡 is then:

− 𝛼
1 + 𝛼𝑎1 − 𝑎2(− 𝛼2

1 + 𝛼 ̄𝜇 − 𝛼
1 + 𝛼𝜇𝑡)(−

𝛼
1 + 𝛼) − 𝑐𝜇𝑡 = 0

Rearranging we get:

𝜇𝑡 = −𝑎1
1+𝛼

𝛼 𝑐 + 𝛼
1+𝛼 𝑎2

− 𝛼2𝑎2
[1+𝛼

𝛼 𝑐 + 𝛼
1+𝛼 𝑎2] (1 + 𝛼) ̄𝜇

52 Chapter 3. Ramsey Plans, Time Inconsistency, Sustainable Plans

https://python-intro.quantecon.org/markov_perf.html

Advanced Dynamic Programming

AMarkov Perfect Equilibrium (MPE) outcome sets 𝜇𝑡 = ̄𝜇:

𝜇𝑡 = ̄𝜇 = −𝑎1
1+𝛼

𝛼 𝑐 + 𝛼
1+𝛼 𝑎2 + 𝛼2

1+𝛼 𝑎2

In light of results presented in the previous section, this can be simplified to:

̄𝜇 = − 𝛼𝑎1
𝛼2𝑎2 + (1 + 𝛼)𝑐

3.9 Outcomes under Three Timing Protocols

Below we compute sequences {𝜃𝑡, 𝜇𝑡} under a Ramsey plan and compare these with the constant levels of 𝜃 and 𝜇 in a)
a Markov Perfect Equilibrium, and b) a Ramsey plan in which the planner is restricted to choose 𝜇𝑡 = ̌𝜇 for all 𝑡 ≥ 0.
We denote the Ramsey sequence as 𝜃𝑅, 𝜇𝑅 and the MPE values as 𝜃𝑀𝑃𝐸, 𝜇𝑀𝑃𝐸.
The bliss level of inflation is denoted by 𝜃∗.
First, we will create a class ChangLQ that solves the models and stores their values

class ChangLQ:
"""
Class to solve LQ Chang model
"""
def __init__(self, α, α0, α1, α2, c, T=1000, θ_n=200):

Record parameters
self.α, self.α0, self.α1 = α, α0, α1
self.α2, self.c, self.T, self.θ_n = α2, c, T, θ_n

Create β using "Poor Man's Friedman Rule"
self.β = np.exp(-α1 / (α * α2))

Solve the Ramsey Problem

LQ Matrices
R = -np.array([[α0, -α1 * α / 2],

[-α1 * α/2, -α2 * α**2 / 2]])
Q = -np.array([[-c / 2]])
A = np.array([[1, 0], [0, (1 + α) / α]])
B = np.array([[0], [-1 / α]])

Solve LQ Problem (Subproblem 1)
lq = LQ(Q, R, A, B, beta=self.β)
self.P, self.F, self.d = lq.stationary_values()

Solve Subproblem 2
self.θ_R = -self.P[0, 1] / self.P[1, 1]

Find bliss level of θ
self.θ_B = np.log(self.β)

Solve the Markov Perfect Equilibrium
self.μ_MPE = -α1 / ((1 + α) / α * c + α / (1 + α)

* α2 + α**2 / (1 + α) * α2)
self.θ_MPE = self.μ_MPE

(continues on next page)

3.9. Outcomes under Three Timing Protocols 53

Advanced Dynamic Programming

(continued from previous page)

self.μ_check = -α * α1 / (α2 * α**2 + c)

Calculate value under MPE and Check economy
self.J_MPE = (α0 + α1 * (-α * self.μ_MPE) - α2 / 2

* (-α * self.μ_MPE)**2 - c/2 * self.μ_MPE**2) / (1 - self.β)
self.J_check = (α0 + α1 * (-α * self.μ_check) - α2/2

* (-α * self.μ_check)**2 - c / 2 * self.μ_check**2) \
/ (1 - self.β)

Simulate Ramsey plan for large number of periods
θ_series = np.vstack((np.ones((1, T)), np.zeros((1, T))))
μ_series = np.zeros(T)
J_series = np.zeros(T)
θ_series[1, 0] = self.θ_R
μ_series[0] = -self.F.dot(θ_series[:, 0])
J_series[0] = -θ_series[:, 0] @ self.P @ θ_series[:, 0].T
for i in range(1, T):

θ_series[:, i] = (A - B @ self.F) @ θ_series[:, i-1]
μ_series[i] = -self.F @ θ_series[:, i]
J_series[i] = -θ_series[:, i] @ self.P @ θ_series[:, i].T

self.J_series = J_series
self.μ_series = μ_series
self.θ_series = θ_series

Find the range of θ in Ramsey plan
θ_LB = min(θ_series[1, :])
θ_LB = min(θ_LB, self.θ_B)
θ_UB = max(θ_series[1, :])
θ_UB = max(θ_UB, self.θ_MPE)
θ_range = θ_UB - θ_LB
self.θ_LB = θ_LB - 0.05 * θ_range
self.θ_UB = θ_UB + 0.05 * θ_range
self.θ_range = θ_range

Find value function and policy functions over range of θ
θ_space = np.linspace(self.θ_LB, self.θ_UB, 200)
J_space = np.zeros(200)
check_space = np.zeros(200)
μ_space = np.zeros(200)
θ_prime = np.zeros(200)
for i in range(200):

J_space[i] = - np.array((1, θ_space[i])) \
@ self.P @ np.array((1, θ_space[i])).T

μ_space[i] = - self.F @ np.array((1, θ_space[i]))
x_prime = (A - B @ self.F) @ np.array((1, θ_space[i]))
θ_prime[i] = x_prime[1]
check_space[i] = (α0 + α1 * (-α * θ_space[i]) -
α2/2 * (-α * θ_space[i])**2 - c/2 * θ_space[i]**2) / (1 - self.β)

J_LB = min(J_space)
J_UB = max(J_space)
J_range = J_UB - J_LB
self.J_LB = J_LB - 0.05 * J_range
self.J_UB = J_UB + 0.05 * J_range
self.J_range = J_range

(continues on next page)

54 Chapter 3. Ramsey Plans, Time Inconsistency, Sustainable Plans

Advanced Dynamic Programming

(continued from previous page)

self.J_space = J_space
self.θ_space = θ_space
self.μ_space = μ_space
self.θ_prime = θ_prime
self.check_space = check_space

We will create an instance of ChangLQ with the following parameters

clq = ChangLQ(α=1, α0=1, α1=0.5, α2=3, c=2)
clq.β

/tmp/ipykernel_2356/2001568470.py:51: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
μ_series[0] = -self.F.dot(θ_series[:, 0])

/tmp/ipykernel_2356/2001568470.py:55: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
μ_series[i] = -self.F @ θ_series[:, i]

/tmp/ipykernel_2356/2001568470.py:81: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
μ_space[i] = - self.F @ np.array((1, θ_space[i]))

0.8464817248906141

The following code generates a figure that plots the value function from theRamsey Planner’s problem, which ismaximized
at 𝜃𝑅

0 .
The figure also shows the limiting value 𝜃𝑅

∞ to which the inflation rate 𝜃𝑡 converges under the Ramsey plan and compares
it to the MPE value and the bliss value.

def plot_value_function(clq):
"""
Method to plot the value function over the relevant range of θ

Here clq is an instance of ChangLQ

"""
fig, ax = plt.subplots()

ax.set_xlim([clq.θ_LB, clq.θ_UB])
ax.set_ylim([clq.J_LB, clq.J_UB])

Plot value function
ax.plot(clq.θ_space, clq.J_space, lw=2)
plt.xlabel(r"θ", fontsize=18)
plt.ylabel(r"$J(\theta)$", fontsize=18)

t1 = clq.θ_space[np.argmax(clq.J_space)]
tR = clq.θ_series[1, -1]

(continues on next page)

3.9. Outcomes under Three Timing Protocols 55

Advanced Dynamic Programming

(continued from previous page)

θ_points = [t1, tR, clq.θ_B, clq.θ_MPE]
labels = [r"θ_0^R", r"θ_∞^R",

r"θ^*", r"θ^{MPE}"]

Add points for θs
for θ, label in zip(θ_points, labels):

ax.scatter(θ, clq.J_LB + 0.02 * clq.J_range, 60, 'black', 'v')
ax.annotate(label,

xy=(θ, clq.J_LB + 0.01 * clq.J_range),
xytext=(θ - 0.01 * clq.θ_range,
clq.J_LB + 0.08 * clq.J_range),
fontsize=18)

plt.tight_layout()
plt.show()

plot_value_function(clq)

The next code generates a figure that plots the value function from the Ramsey Planner’s problem as well as that for a
Ramsey planner that must choose a constant 𝜇 (that in turn equals an implied constant 𝜃).

def compare_ramsey_check(clq):
"""
Method to compare values of Ramsey and Check

Here clq is an instance of ChangLQ

(continues on next page)

56 Chapter 3. Ramsey Plans, Time Inconsistency, Sustainable Plans

Advanced Dynamic Programming

(continued from previous page)

"""
fig, ax = plt.subplots()
check_min = min(clq.check_space)
check_max = max(clq.check_space)
check_range = check_max - check_min
check_LB = check_min - 0.05 * check_range
check_UB = check_max + 0.05 * check_range
ax.set_xlim([clq.θ_LB, clq.θ_UB])
ax.set_ylim([check_LB, check_UB])
ax.plot(clq.θ_space, clq.J_space, lw=2, label=r"$J(\theta)$")

plt.xlabel(r"θ", fontsize=18)
ax.plot(clq.θ_space, clq.check_space,

lw=2, label=r"$V^\check(\theta)$")
plt.legend(fontsize=14, loc='upper left')

θ_points = [clq.θ_space[np.argmax(clq.J_space)],
clq.μ_check]

labels = [r"θ_0^R", r"θ^\check"]

for θ, label in zip(θ_points, labels):
ax.scatter(θ, check_LB + 0.02 * check_range, 60, 'k', 'v')
ax.annotate(label,

xy=(θ, check_LB + 0.01 * check_range),
xytext=(θ - 0.02 * check_range,

check_LB + 0.08 * check_range),
fontsize=18)

plt.tight_layout()
plt.show()

compare_ramsey_check(clq)

3.9. Outcomes under Three Timing Protocols 57

Advanced Dynamic Programming

The next code generates figures that plot the policy functions for a continuation Ramsey planner.
The left figure shows the choice of 𝜃′ chosen by a continuation Ramsey planner who inherits 𝜃.
The right figure plots a continuation Ramsey planner’s choice of 𝜇 as a function of an inherited 𝜃.

def plot_policy_functions(clq):
"""
Method to plot the policy functions over the relevant range of θ

Here clq is an instance of ChangLQ
"""
fig, axes = plt.subplots(1, 2, figsize=(12, 4))

labels = [r"θ_0^R", r"θ_∞^R"]

ax = axes[0]
ax.set_ylim([clq.θ_LB, clq.θ_UB])
ax.plot(clq.θ_space, clq.θ_prime,

label=r"$\theta'(\theta)$", lw=2)
x = np.linspace(clq.θ_LB, clq.θ_UB, 5)
ax.plot(x, x, 'k--', lw=2, alpha=0.7)
ax.set_ylabel(r"θ'", fontsize=18)

θ_points = [clq.θ_space[np.argmax(clq.J_space)],
clq.θ_series[1, -1]]

(continues on next page)

58 Chapter 3. Ramsey Plans, Time Inconsistency, Sustainable Plans

Advanced Dynamic Programming

(continued from previous page)

for θ, label in zip(θ_points, labels):
ax.scatter(θ, clq.θ_LB + 0.02 * clq.θ_range, 60, 'k', 'v')
ax.annotate(label,

xy=(θ, clq.θ_LB + 0.01 * clq.θ_range),
xytext=(θ - 0.02 * clq.θ_range,

clq.θ_LB + 0.08 * clq.θ_range),
fontsize=18)

ax = axes[1]
μ_min = min(clq.μ_space)
μ_max = max(clq.μ_space)
μ_range = μ_max - μ_min
ax.set_ylim([μ_min - 0.05 * μ_range, μ_max + 0.05 * μ_range])
ax.plot(clq.θ_space, clq.μ_space, lw=2)
ax.set_ylabel(r"$\mu(\theta)$", fontsize=18)

for ax in axes:
ax.set_xlabel(r"θ", fontsize=18)
ax.set_xlim([clq.θ_LB, clq.θ_UB])

for θ, label in zip(θ_points, labels):
ax.scatter(θ, μ_min - 0.03 * μ_range, 60, 'black', 'v')
ax.annotate(label, xy=(θ, μ_min - 0.03 * μ_range),

xytext=(θ - 0.02 * clq.θ_range,
μ_min + 0.03 * μ_range),

fontsize=18)
plt.tight_layout()
plt.show()

plot_policy_functions(clq)

The following code generates a figure that plots sequences of 𝜇 and 𝜃 in the Ramsey plan and compares these to the
constant levels in a MPE and in a Ramsey plan with a government restricted to set 𝜇𝑡 to a constant for all 𝑡.

def plot_ramsey_MPE(clq, T=15):
"""
Method to plot Ramsey plan against Markov Perfect Equilibrium

Here clq is an instance of ChangLQ
"""
fig, axes = plt.subplots(1, 2, figsize=(12, 4))

(continues on next page)

3.9. Outcomes under Three Timing Protocols 59

Advanced Dynamic Programming

(continued from previous page)

plots = [clq.θ_series[1, 0:T], clq.μ_series[0:T]]
MPEs = [clq.θ_MPE, clq.μ_MPE]
labels = [r"\theta", r"\mu"]

axes[0].hlines(clq.θ_B, 0, T-1, 'r', label=r"θ^*")

for ax, plot, MPE, label in zip(axes, plots, MPEs, labels):
ax.plot(plot, label=r"$" + label + "^R$")
ax.hlines(MPE, 0, T-1, 'orange', label=r"$" + label + "^{MPE}$")
ax.hlines(clq.μ_check, 0, T, 'g', label=r"$" + label + "^\check$")
ax.set_xlabel(r"t", fontsize=16)
ax.set_ylabel(r"$" + label + "_t$", fontsize=18)
ax.legend(loc='upper right')

plt.tight_layout()
plt.show()

plot_ramsey_MPE(clq)

3.9.1 Time Inconsistency of Ramsey Plan

The variation over time in ⃗𝜇 chosen by the Ramsey planner is a symptom of time inconsistency.
• The Ramsey planner reaps immediate benefits from promising lower inflation later to be achieved by costly dis-
torting taxes.

• These benefits are intermediated by reductions in expected inflation that precede the reductions in money creation
rates that rationalize them, as indicated by equation (3.3).

• A government authority offered the opportunity to ignore effects on past utilities and to reoptimize at date 𝑡 ≥ 1
would, if allowed, want to deviate from a Ramsey plan.

Note: A modified Ramsey plan constructed under the restriction that 𝜇𝑡 must be constant over time is time consistent
(see ̌𝜇 and ̌𝜃 in the above graphs).

60 Chapter 3. Ramsey Plans, Time Inconsistency, Sustainable Plans

Advanced Dynamic Programming

3.9.2 Meaning of Time Inconsistency

In settings in which governments actually choose sequentially, many economists regard a time inconsistent plan as im-
plausible because of the incentives to deviate that are presented along the plan.
A way to summarize this defect in a Ramsey plan is to say that it is not credible because there endure incentives for
policymakers to deviate from it.
For that reason, the Markov perfect equilibrium concept attracts many economists.

• A Markov perfect equilibrium plan is constructed to insure that government policymakers who choose sequentially
do not want to deviate from it.

The no incentive to deviate from the plan property is what makes the Markov perfect equilibrium concept attractive.

3.9.3 Ramsey Plans Strike Back

Research by Abreu [Abr88], Chari and Kehoe [CK90] [Sto89], and Stokey [Sto91] discovered conditions under which a
Ramsey plan can be rescued from the complaint that it is not credible.
They accomplished this by expanding the description of a plan to include expectations about adverse consequences of
deviating from it that can serve to deter deviations.
We turn to such theories of sustainable plans next.

3.10 A Fourth Model of Government Decision Making

This is a model in which
• the government chooses {𝜇𝑡}∞

𝑡=0 not once and for all at 𝑡 = 0 but chooses to set 𝜇𝑡 at time 𝑡, not before.
• private agents’ forecasts of {𝜇𝑡+𝑗+1, 𝜃𝑡+𝑗+1}∞

𝑗=0 respond to whether the government at 𝑡 confirms or disappoints
their forecasts of 𝜇𝑡 brought into period 𝑡 from period 𝑡 − 1.

• the government at each time 𝑡 understands how private agents’ forecasts will respond to its choice of 𝜇𝑡.
• at each 𝑡, the government chooses 𝜇𝑡 to maximize a continuation discounted utility.

3.10.1 A Theory of Government Decision Making

⃗𝜇 is chosen by a sequence of government decision makers, one for each 𝑡 ≥ 0.
We assume the following within-period and between-period timing protocol for each 𝑡 ≥ 0:

• at time 𝑡 − 1, private agents expect that the government will set 𝜇𝑡 = ̃𝜇𝑡, and more generally that it will set
𝜇𝑡+𝑗 = ̃𝜇𝑡+𝑗 for all 𝑗 ≥ 0.

• The forecasts { ̃𝜇𝑡+𝑗}𝑗≥0 determine a 𝜃𝑡 = ̃𝜃𝑡 and an associated log of real balances 𝑚𝑡 − 𝑝𝑡 = −𝛼 ̃𝜃𝑡 at 𝑡.

• Given those expectations and an associated 𝜃𝑡 = ̃𝜃𝑡, at 𝑡 a government is free to set 𝜇𝑡 ∈ R.
• If the government at 𝑡 confirms private agents’ expectations by setting 𝜇𝑡 = ̃𝜇𝑡 at time 𝑡, private agents expect the
continuation government policy { ̃𝜇𝑡+𝑗+1}∞

𝑗=0 and therefore bring expectation ̃𝜃𝑡+1 into period 𝑡 + 1.
• If the government at 𝑡 disappoints private agents by setting 𝜇𝑡 ≠ ̃𝜇𝑡, private agents expect {𝜇𝐴

𝑗 }∞
𝑗=0 as the

continuation policy for 𝑡 + 1, i.e., {𝜇𝑡+𝑗+1} = {𝜇𝐴
𝑗 }∞

𝑗=0 and therefore expect an associated 𝜃𝐴
0 for 𝑡 + 1. Here

⃗𝜇𝐴 = {𝜇𝐴
𝑗 }∞

𝑗=0 is an alternative government plan to be described below.

3.10. A Fourth Model of Government Decision Making 61

Advanced Dynamic Programming

3.10.2 Temptation to Deviate from Plan

The government’s one-period return function 𝑠(𝜃, 𝜇) described in equation (3.6) above has the property that for all 𝜃

−𝑠(𝜃, 0) ≥ −𝑠(𝜃, 𝜇)

This inequality implies that whenever the policy calls for the government to set 𝜇 ≠ 0, the government could raise its
one-period payoff by setting 𝜇 = 0.
Disappointing private sector expectations in that way would increase the government’s current payoff but would have
adverse consequences for subsequent government payoffs because the private sector would alter its expectations about
future settings of 𝜇.
The temporary gain constitutes the government’s temptation to deviate from a plan.
If the government at 𝑡 is to resist the temptation to raise its current payoff, it is only because it forecasts adverse con-
sequences that its setting of 𝜇𝑡 would bring for continuation government payoffs via alterations in the private sector’s
expectations.

3.11 Sustainable or Credible Plan

We call a plan ⃗𝜇 sustainable or credible if at each 𝑡 ≥ 0 the government chooses to confirm private agents’ prior
expectation of its setting for 𝜇𝑡.
The government will choose to confirm prior expectations only if the long-term loss from disappointing private sector
expectations – coming from the government’s understanding of the way the private sector adjusts its expectations in
response to having its prior expectations at 𝑡 disappointed – outweigh the short-term gain from disappointing those
expectations.
The theory of sustainable or credible plans assumes throughout that private sector expectations about what future gov-
ernments will do are based on the assumption that governments at times 𝑡 ≥ 0 always act to maximize the continuation
discounted utilities that describe those governments’ purposes.
This aspect of the theory means that credible plans always come in pairs:

• a credible (continuation) plan to be followed if the government at 𝑡 confirms private sector expectations
• a credible plan to be followed if the government at 𝑡 disappoints private sector expectations

That credible plans come in pairs threaten to bring an explosion of plans to keep track of
• each credible plan itself consists of two credible plans
• therefore, the number of plans underlying one plan is unbounded

But Dilip Abreu showed how to render manageable the number of plans that must be kept track of.
The key is an object called a self-enforcing plan.

62 Chapter 3. Ramsey Plans, Time Inconsistency, Sustainable Plans

Advanced Dynamic Programming

3.11.1 Abreu’s Self-Enforcing Plan

A plan ⃗𝜇𝐴 (here the superscipt 𝐴 is for Abreu) is said to be self-enforcing if
• the consequence of disappointing private agents’ expectations at time 𝑗 is to restart plan ⃗𝜇𝐴 at time 𝑗 + 1
• the consequence of restarting the plan is sufficiently adverse that it forever deters all deviations from the plan

More precisely, a government plan ⃗𝜇𝐴 with equilibrium inflation sequence ⃗𝜃𝐴 is self-enforcing if

𝑣𝐴
𝑗 = −𝑠(𝜃𝐴

𝑗 , 𝜇𝐴
𝑗) + 𝛽𝑣𝐴

𝑗+1

≥ −𝑠(𝜃𝐴
𝑗 , 0) + 𝛽𝑣𝐴

0 ≡ 𝑣𝐴,𝐷
𝑗 , 𝑗 ≥ 0

(3.10)

(Here it is useful to recall that setting 𝜇 = 0 is the maximizing choice for the government’s one-period return function)
The first line tells the consequences of confirming private agents’ expectations by following the plan, while the second line
tells the consequences of disappointing private agents’ expectations by deviating from the plan.
A consequence of the inequality stated in the definition is that a self-enforcing plan is credible.
Self-enforcing plans can be used to construct other credible plans, including ones with better values.
Thus, where ⃗𝑣𝐴 is the value associated with a self-enforcing plan ⃗𝜇𝐴, a sufficient condition for another plan ⃗𝜇 associated
with inflation ⃗𝜃 and value ⃗𝑣 to be credible is that

𝑣𝑗 = −𝑠(𝜃𝑗, 𝜇𝑗) + 𝛽𝑣𝑗+1
≥ −𝑠(𝜃𝑗, 0) + 𝛽𝑣𝐴

0 ∀𝑗 ≥ 0 (3.11)

For this condition to be satisfied it is necessary and sufficient that

−𝑠(𝜃𝑗, 0) − (−𝑠(𝜃𝑗, 𝜇𝑗)) < 𝛽(𝑣𝑗+1 − 𝑣𝐴
0)

The left side of the above inequality is the government’s gain from deviating from the plan, while the right side is the
government’s loss from deviating from the plan.
A government never wants to deviate from a credible plan.
Abreu taught us that key step in constructing a credible plan is first constructing a self-enforcing plan that has a low time
0 value.
The idea is to use the self-enforcing plan as a continuation plan whenever the government’s choice at time 𝑡 fails to confirm
private agents’ expectation.
We shall use a construction featured in Abreu ([Abr88]) to construct a self-enforcing plan with low time 0 value.

3.11.2 Abreu Carrot-Stick Plan

Abreu ([Abr88]) invented a way to create a self-enforcing plan with a low initial value.
Imitating his idea, we can construct a self-enforcing plan ⃗𝜇 with a low time 0 value to the government by insisting that
future government decision makers set 𝜇𝑡 to a value yielding low one-period utilities to the household for a long time,
after which government decisions thereafter yield high one-period utilities.

• Low one-period utilities early are a stick
• High one-period utilities later are a carrot

Consider a candidate plan ⃗𝜇𝐴 that sets 𝜇𝐴
𝑡 = ̄𝜇 (a high positive number) for 𝑇𝐴 periods, and then reverts to the Ramsey

plan.
Denote this sequence by {𝜇𝐴

𝑡 }∞
𝑡=0.

3.11. Sustainable or Credible Plan 63

Advanced Dynamic Programming

The sequence of inflation rates implied by this plan, {𝜃𝐴
𝑡 }∞

𝑡=0, can be calculated using:

𝜃𝐴
𝑡 = 1

1 + 𝛼
∞

∑
𝑗=0

(𝛼
1 + 𝛼)

𝑗
𝜇𝐴

𝑡+𝑗

The value of {𝜃𝐴
𝑡 , 𝜇𝐴

𝑡 }∞
𝑡=0 at time 0 is

𝑣𝐴
0 = −

𝑇𝐴−1
∑
𝑡=0

𝛽𝑡𝑠(𝜃𝐴
𝑡 , 𝜇𝐴

𝑡) + 𝛽𝑇𝐴𝐽(𝜃𝑅
0)

For an appropriate 𝑇𝐴, this plan can be verified to be self-enforcing and therefore credible.

3.11.3 Example of Self-Enforcing Plan

The following example implements an Abreu stick-and-carrot plan.
The government sets 𝜇𝐴

𝑡 = 0.1 for 𝑡 = 0, 1, … , 9 and then starts the Ramsey plan.
We have computed outcomes for this plan.
For this plan, we plot the 𝜃𝐴, 𝜇𝐴 sequences as well as the implied 𝑣𝐴 sequence.
Notice that because the government sets money supply growth high for 10 periods, inflation starts high.
Inflation gradually slowly declines because people expect the government to lower the money growth rate after period 10.
From the 10th period onwards, the inflation rate 𝜃𝐴

𝑡 associated with this Abreu plan starts the Ramsey plan from its
beginning, i.e., 𝜃𝐴

𝑡+10 = 𝜃𝑅
𝑡 ∀𝑡 ≥ 0.

def abreu_plan(clq, T=1000, T_A=10, μ_bar=0.1, T_Plot=20):

Append Ramsey μ series to stick μ series
clq.μ_A = np.append(np.full(T_A, μ_bar), clq.μ_series[:-T_A])

Calculate implied stick θ series
clq.θ_A = np.zeros(T)
discount = np.zeros(T)
for t in range(T):

discount[t] = (clq.α / (1 + clq.α))**t
for t in range(T):

length = clq.μ_A[t:].shape[0]
clq.θ_A[t] = 1 / (clq.α + 1) * sum(clq.μ_A[t:] * discount[0:length])

Calculate utility of stick plan
U_A = np.zeros(T)
for t in range(T):

U_A[t] = clq.β**t * (clq.α0 + clq.α1 * (-clq.θ_A[t])
- clq.α2 / 2 * (-clq.θ_A[t])**2 - clq.c * clq.μ_A[t]**2)

clq.V_A = np.zeros(T)
for t in range(T):

clq.V_A[t] = sum(U_A[t:] / clq.β**t)

Make sure Abreu plan is self-enforcing
clq.V_dev = np.zeros(T_Plot)
for t in range(T_Plot):

clq.V_dev[t] = (clq.α0 + clq.α1 * (-clq.θ_A[t])

(continues on next page)

64 Chapter 3. Ramsey Plans, Time Inconsistency, Sustainable Plans

Advanced Dynamic Programming

(continued from previous page)

- clq.α2 / 2 * (-clq.θ_A[t])**2) \
+ clq.β * clq.V_A[0]

fig, axes = plt.subplots(3, 1, figsize=(8, 12))

axes[2].plot(clq.V_dev[0:T_Plot], label="$V^{A, D}_t$", c="orange")

plots = [clq.θ_A, clq.μ_A, clq.V_A]
labels = [r"θ_t^A", r"μ_t^A", r"V^A_t"]

for plot, ax, label in zip(plots, axes, labels):
ax.plot(plot[0:T_Plot], label=label)
ax.set(xlabel="t", ylabel=label)
ax.legend()

plt.tight_layout()
plt.show()

abreu_plan(clq)

3.11. Sustainable or Credible Plan 65

Advanced Dynamic Programming

66 Chapter 3. Ramsey Plans, Time Inconsistency, Sustainable Plans

Advanced Dynamic Programming

To confirm that the plan ⃗𝜇𝐴 is self-enforcing, we plot an object that we call 𝑉 𝐴,𝐷
𝑡 , defined in the key inequality in the

second line of equation (3.10) above.
𝑉 𝐴,𝐷

𝑡 is the value at 𝑡 of deviating from the self-enforcing plan ⃗𝜇𝐴 by setting 𝜇𝑡 = 0 and then restarting the plan at 𝑣𝐴
0

at 𝑡 + 1:

𝑣𝐴,𝐷
𝑡 = −𝑠(𝜃𝑗, 0) + 𝛽𝑣𝐴

0

In the above graph 𝑣𝐴
𝑡 > 𝑣𝐴,𝐷

𝑡 , which confirms that ⃗𝜇𝐴 is a self-enforcing plan.
We can also verify the inequalities required for ⃗𝜇𝐴 to be self-confirming numerically as follows

np.all(clq.V_A[0:20] > clq.V_dev[0:20])

True

Given that plan ⃗𝜇𝐴 is self-enforcing, we can check that the Ramsey plan ⃗𝜇𝑅 is credible by verifying that:

𝑣𝑅
𝑡 ≥ −𝑠(𝜃𝑅

𝑡 , 0) + 𝛽𝑣𝐴
0 , ∀𝑡 ≥ 0

def check_ramsey(clq, T=1000):
Make sure Ramsey plan is sustainable
R_dev = np.zeros(T)
for t in range(T):

R_dev[t] = (clq.α0 + clq.α1 * (-clq.θ_series[1, t])
- clq.α2 / 2 * (-clq.θ_series[1, t])**2) \
+ clq.β * clq.V_A[0]

return np.all(clq.J_series > R_dev)

check_ramsey(clq)

True

3.11.4 Recursive Representation of a Sustainable Plan

We can represent a sustainable plan recursively by taking the continuation value 𝑣𝑡 as a state variable.
We form the following 3-tuple of functions:

̂𝜇𝑡 = 𝜈𝜇(𝑣𝑡)
𝜃𝑡 = 𝜈𝜃(𝑣𝑡)

𝑣𝑡+1 = 𝜈𝑣(𝑣𝑡, 𝜇𝑡)
(3.12)

In addition to these equations, we need an initial value 𝑣0 to characterize a sustainable plan.
The first equation of (3.12) tells the recommended value of ̂𝜇𝑡 as a function of the promised value 𝑣𝑡.
The second equation of (3.12) tells the inflation rate as a function of 𝑣𝑡.
The third equation of (3.12) updates the continuation value in a way that depends on whether the government at 𝑡 confirms
private agents’ expectations by setting 𝜇𝑡 equal to the recommended value ̂𝜇𝑡, or whether it disappoints those expectations.

3.11. Sustainable or Credible Plan 67

Advanced Dynamic Programming

3.12 Whose Credible Plan is it?

A credible government plan ⃗𝜇 plays multiple roles.
• It is a sequence of actions chosen by the government.
• It is a sequence of private agents’ forecasts of government actions.

Thus, ⃗𝜇 is both a government policy and a collection of private agents’ forecasts of government policy.
Does the government choose policy actions or does it simply confirm prior private sector forecasts of those actions?
An argument in favor of the government chooses interpretation comes from noting that the theory of credible plans builds
in a theory that the government each period chooses the action that it wants.
An argument in favor of the simply confirm interpretation is gathered from staring at the key inequality (3.11) that defines
a credible policy.

3.13 Comparison of Equilibrium Values

We have computed plans for
• an ordinary (unrestricted) Ramsey planner who chooses a sequence {𝜇𝑡}∞

𝑡=0 at time 0
• a Ramsey planner restricted to choose a constant 𝜇 for all 𝑡 ≥ 0
• a Markov perfect sequence of governments

Below we compare equilibrium time zero values for these three.
We confirm that the value delivered by the unrestricted Ramsey planner exceeds the value delivered by the restricted
Ramsey planner which in turn exceeds the value delivered by the Markov perfect sequence of governments.

clq.J_series[0]

6.67918822960449

clq.J_check

6.676729524674898

clq.J_MPE

6.663435886995107

We have also computed credible plans for a government or sequence of governments that choose sequentially.
These include

• a self-enforcing plan that gives a low initial value 𝑣0.
• a better plan – possibly one that attains values associated with Ramsey plan – that is not self-enforcing.

68 Chapter 3. Ramsey Plans, Time Inconsistency, Sustainable Plans

Advanced Dynamic Programming

3.14 Note on Dynamic Programming Squared

The theory deployed in this lecture is an application of what we nickname dynamic programming squared.
The nickname refers to the feature that a value satisfying one Bellman equation appears as an argument in a second
Bellman equation.
Thus, our models have involved two Bellman equations:

• equation (3.1) expresses how 𝜃𝑡 depends on 𝜇𝑡 and 𝜃𝑡+1

• equation (3.4) expresses how value 𝑣𝑡 depends on (𝜇𝑡, 𝜃𝑡) and 𝑣𝑡+1

A value 𝜃 from one Bellman equation appears as an argument of a second Bellman equation for another value 𝑣.

3.14. Note on Dynamic Programming Squared 69

Advanced Dynamic Programming

70 Chapter 3. Ramsey Plans, Time Inconsistency, Sustainable Plans

CHAPTER

FOUR

OPTIMAL TAXATION WITH STATE-CONTINGENT DEBT

Contents

• Optimal Taxation with State-Contingent Debt

– Overview

– A Competitive Equilibrium with Distorting Taxes

– Recursive Formulation of the Ramsey Problem

– Examples

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

4.1 Overview

This lecture describes a celebrated model of optimal fiscal policy by Robert E. Lucas, Jr., and Nancy Stokey [LS83].
The model revisits classic issues about how to pay for a war.
Here a war means a more or less temporary surge in an exogenous government expenditure process.
The model features

• a government that must finance an exogenous stream of government expenditures with either
– a flat rate tax on labor, or
– purchases and sales from a full array of Arrow state-contingent securities

• a representative household that values consumption and leisure
• a linear production function mapping labor into a single good
• a Ramsey planner who at time 𝑡 = 0 chooses a plan for taxes and trades of Arrow securities for all 𝑡 ≥ 0

After first presenting the model in a space of sequences, we shall represent it recursively in terms of two Bellman equations
formulated along lines that we encountered in Dynamic Stackelberg models.
As in Dynamic Stackelberg models, to apply dynamic programming we shall define the state vector artfully.
In particular, we shall include forward-looking variables that summarize optimal responses of private agents to a Ramsey
plan.

71

https://en.wikipedia.org/wiki/Arrow_security

Advanced Dynamic Programming

See Optimal taxation for analysis within a linear-quadratic setting.
Let’s start with some standard imports:

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import root
from quantecon import MarkovChain
from quantecon.optimize.nelder_mead import nelder_mead
from numba import njit, prange, float64
from numba.experimental import jitclass

4.2 A Competitive Equilibrium with Distorting Taxes

At time 𝑡 ≥ 0 a random variable 𝑠𝑡 belongs to a time-invariant set 𝑆 = [1, 2, … , 𝑆].
For 𝑡 ≥ 0, a history 𝑠𝑡 = [𝑠𝑡, 𝑠𝑡−1, … , 𝑠0] of an exogenous state 𝑠𝑡 has joint probability density 𝜋𝑡(𝑠𝑡).
We begin by assuming that government purchases 𝑔𝑡(𝑠𝑡) at time 𝑡 ≥ 0 depend on 𝑠𝑡.
Let 𝑐𝑡(𝑠𝑡), ℓ𝑡(𝑠𝑡), and 𝑛𝑡(𝑠𝑡) denote consumption, leisure, and labor supply, respectively, at history 𝑠𝑡 and date 𝑡.
A representative household is endowed with one unit of time that can be divided between leisure ℓ𝑡 and labor 𝑛𝑡:

𝑛𝑡(𝑠𝑡) + ℓ𝑡(𝑠𝑡) = 1 (4.1)

Output equals 𝑛𝑡(𝑠𝑡) and can be divided between 𝑐𝑡(𝑠𝑡) and 𝑔𝑡(𝑠𝑡)

𝑐𝑡(𝑠𝑡) + 𝑔𝑡(𝑠𝑡) = 𝑛𝑡(𝑠𝑡) (4.2)

A representative household’s preferences over {𝑐𝑡(𝑠𝑡), ℓ𝑡(𝑠𝑡)}∞
𝑡=0 are ordered by

∞
∑
𝑡=0

∑
𝑠𝑡

𝛽𝑡𝜋𝑡(𝑠𝑡)𝑢[𝑐𝑡(𝑠𝑡), ℓ𝑡(𝑠𝑡)] (4.3)

where the utility function 𝑢 is increasing, strictly concave, and three times continuously differentiable in both arguments.
The technology pins down a pre-tax wage rate to unity for all 𝑡, 𝑠𝑡.
The government imposes a flat-rate tax 𝜏𝑡(𝑠𝑡) on labor income at time 𝑡, history 𝑠𝑡.
There are complete markets in one-period Arrow securities.
One unit of an Arrow security issued at time 𝑡 at history 𝑠𝑡 and promising to pay one unit of time 𝑡 + 1 consumption in
state 𝑠𝑡+1 costs 𝑝𝑡+1(𝑠𝑡+1|𝑠𝑡).
The government issues one-period Arrow securities each period.
The government has a sequence of budget constraints whose time 𝑡 ≥ 0 component is

𝑔𝑡(𝑠𝑡) = 𝜏𝑡(𝑠𝑡)𝑛𝑡(𝑠𝑡) + ∑
𝑠𝑡+1

𝑝𝑡+1(𝑠𝑡+1|𝑠𝑡)𝑏𝑡+1(𝑠𝑡+1|𝑠𝑡) − 𝑏𝑡(𝑠𝑡|𝑠𝑡−1) (4.4)

where
• 𝑝𝑡+1(𝑠𝑡+1|𝑠𝑡) is a competitive equilibrium price of one unit of consumption at date 𝑡 + 1 in state 𝑠𝑡+1 at date 𝑡 and
history 𝑠𝑡.

• 𝑏𝑡(𝑠𝑡|𝑠𝑡−1) is government debt falling due at time 𝑡, history 𝑠𝑡.

72 Chapter 4. Optimal Taxation with State-Contingent Debt

https://dle.quantecon.org/lqramsey.html

Advanced Dynamic Programming

Government debt 𝑏0(𝑠0) is an exogenous initial condition.
The representative household has a sequence of budget constraints whose time 𝑡 ≥ 0 component is

𝑐𝑡(𝑠𝑡) + ∑
𝑠𝑡+1

𝑝𝑡(𝑠𝑡+1|𝑠𝑡)𝑏𝑡+1(𝑠𝑡+1|𝑠𝑡) = [1 − 𝜏𝑡(𝑠𝑡)] 𝑛𝑡(𝑠𝑡) + 𝑏𝑡(𝑠𝑡|𝑠𝑡−1) ∀𝑡 ≥ 0 (4.5)

A government policy is an exogenous sequence {𝑔(𝑠𝑡)}∞
𝑡=0, a tax rate sequence {𝜏𝑡(𝑠𝑡)}∞

𝑡=0, and a government debt
sequence {𝑏𝑡+1(𝑠𝑡+1)}∞

𝑡=0.
A feasible allocation is a consumption-labor supply plan {𝑐𝑡(𝑠𝑡), 𝑛𝑡(𝑠𝑡)}∞

𝑡=0 that satisfies (4.2) at all 𝑡, 𝑠𝑡.
A price system is a sequence of Arrow security prices {𝑝𝑡+1(𝑠𝑡+1|𝑠𝑡)}∞

𝑡=0.
The household faces the price system as a price-taker and takes the government policy as given.
The household chooses {𝑐𝑡(𝑠𝑡), ℓ𝑡(𝑠𝑡)}∞

𝑡=0 to maximize (4.3) subject to (4.5) and (4.1) for all 𝑡, 𝑠𝑡.
A competitive equilibrium with distorting taxes is a feasible allocation, a price system, and a government policy such
that

• Given the price system and the government policy, the allocation solves the household’s optimization problem.
• Given the allocation, government policy, and price system, the government’s budget constraint is satisfied for all

𝑡, 𝑠𝑡.

Note: There are many competitive equilibria with distorting taxes.

They are indexed by different government policies.
The Ramsey problem or optimal taxation problem is to choose a competitive equilibrium with distorting taxes that
maximizes (4.3).

4.2.1 Arrow-Debreu Version of Price System

We find it convenient sometimes to work with the Arrow-Debreu price system that is implied by a sequence of Arrow
securities prices.
Let 𝑞0

𝑡 (𝑠𝑡) be the price at time 0, measured in time 0 consumption goods, of one unit of consumption at time 𝑡, history
𝑠𝑡.
The following recursion relates Arrow-Debreu prices {𝑞0

𝑡 (𝑠𝑡)}∞
𝑡=0 to Arrow securities prices {𝑝𝑡+1(𝑠𝑡+1|𝑠𝑡)}∞

𝑡=0

𝑞0
𝑡+1(𝑠𝑡+1) = 𝑝𝑡+1(𝑠𝑡+1|𝑠𝑡)𝑞0

𝑡 (𝑠𝑡) 𝑠.𝑡. 𝑞0
0(𝑠0) = 1 (4.6)

Arrow-Debreu prices are useful when we want to compress a sequence of budget constraints into a single intertemporal
budget constraint, as we shall find it convenient to do below.

4.2.2 Primal Approach

We apply a popular approach to solving a Ramsey problem, called the primal approach.
The idea is to use first-order conditions for household optimization to eliminate taxes and prices in favor of quantities,
then pose an optimization problem cast entirely in terms of quantities.
After Ramsey quantities have been found, taxes and prices can then be unwound from the allocation.
The primal approach uses four steps:

4.2. A Competitive Equilibrium with Distorting Taxes 73

Advanced Dynamic Programming

1. Obtain first-order conditions of the household’s problem and solve them for {𝑞0
𝑡 (𝑠𝑡), 𝜏𝑡(𝑠𝑡)}∞

𝑡=0 as functions of the
allocation {𝑐𝑡(𝑠𝑡), 𝑛𝑡(𝑠𝑡)}∞

𝑡=0.
2. Substitute these expressions for taxes and prices in terms of the allocation into the household’s present-value budget

constraint.
• This intertemporal constraint involves only the allocation and is regarded as an implementability constraint.

3. Find the allocation that maximizes the utility of the representative household (4.3) subject to the feasibility con-
straints (4.1) and (4.2) and the implementability condition derived in step 2.

• This optimal allocation is called the Ramsey allocation.
4. Use the Ramsey allocation together with the formulas from step 1 to find taxes and prices.

4.2.3 The Implementability Constraint

By sequential substitution of one one-period budget constraint (4.5) into another, we can obtain the household’s present-
value budget constraint:

∞
∑
𝑡=0

∑
𝑠𝑡

𝑞0
𝑡 (𝑠𝑡)𝑐𝑡(𝑠𝑡) =

∞
∑
𝑡=0

∑
𝑠𝑡

𝑞0
𝑡 (𝑠𝑡)[1 − 𝜏𝑡(𝑠𝑡)]𝑛𝑡(𝑠𝑡) + 𝑏0 (4.7)

{𝑞0
𝑡 (𝑠𝑡)}∞

𝑡=1 can be interpreted as a time 0 Arrow-Debreu price system.
To approach the Ramsey problem, we study the household’s optimization problem.
First-order conditions for the household’s problem for ℓ𝑡(𝑠𝑡) and 𝑏𝑡(𝑠𝑡+1|𝑠𝑡), respectively, imply

(1 − 𝜏𝑡(𝑠𝑡)) = 𝑢𝑙(𝑠𝑡)
𝑢𝑐(𝑠𝑡) (4.8)

and

𝑝𝑡+1(𝑠𝑡+1|𝑠𝑡) = 𝛽𝜋(𝑠𝑡+1|𝑠𝑡) (𝑢𝑐(𝑠𝑡+1)
𝑢𝑐(𝑠𝑡)) (4.9)

where 𝜋(𝑠𝑡+1|𝑠𝑡) is the probability distribution of 𝑠𝑡+1 conditional on history 𝑠𝑡.
Equation (4.9) implies that the Arrow-Debreu price system satisfies

𝑞0
𝑡 (𝑠𝑡) = 𝛽𝑡𝜋𝑡(𝑠𝑡) 𝑢𝑐(𝑠𝑡)

𝑢𝑐(𝑠0) (4.10)

(The stochastic process {𝑞0
𝑡 (𝑠𝑡)} is an instance of what finance economists call a stochastic discount factor process.)

Using the first-order conditions (4.8) and (4.9) to eliminate taxes and prices from (4.7), we derive the implementability
condition

∞
∑
𝑡=0

∑
𝑠𝑡

𝛽𝑡𝜋𝑡(𝑠𝑡)[𝑢𝑐(𝑠𝑡)𝑐𝑡(𝑠𝑡) − 𝑢ℓ(𝑠𝑡)𝑛𝑡(𝑠𝑡)] − 𝑢𝑐(𝑠0)𝑏0 = 0 (4.11)

The Ramsey problem is to choose a feasible allocation that maximizes
∞

∑
𝑡=0

∑
𝑠𝑡

𝛽𝑡𝜋𝑡(𝑠𝑡)𝑢[𝑐𝑡(𝑠𝑡), 1 − 𝑛𝑡(𝑠𝑡)] (4.12)

subject to (4.11).

74 Chapter 4. Optimal Taxation with State-Contingent Debt

Advanced Dynamic Programming

4.2.4 Solution Details

First, define a “pseudo utility function”

𝑉 [𝑐𝑡(𝑠𝑡), 𝑛𝑡(𝑠𝑡), Φ] = 𝑢[𝑐𝑡(𝑠𝑡), 1 − 𝑛𝑡(𝑠𝑡)] + Φ [𝑢𝑐(𝑠𝑡)𝑐𝑡(𝑠𝑡) − 𝑢ℓ(𝑠𝑡)𝑛𝑡(𝑠𝑡)] (4.13)

where Φ is a Lagrange multiplier on the implementability condition (4.7).
Next form the Lagrangian

𝐽 =
∞

∑
𝑡=0

∑
𝑠𝑡

𝛽𝑡𝜋𝑡(𝑠𝑡){𝑉 [𝑐𝑡(𝑠𝑡), 𝑛𝑡(𝑠𝑡), Φ] + 𝜃𝑡(𝑠𝑡)[𝑛𝑡(𝑠𝑡) − 𝑐𝑡(𝑠𝑡) − 𝑔𝑡(𝑠𝑡)]} − Φ𝑢𝑐(0)𝑏0 (4.14)

where {𝜃𝑡(𝑠𝑡); ∀𝑠𝑡}𝑡≥0 is a sequence of Lagrange multipliers on the feasible conditions (4.2).
Given an initial government debt 𝑏0, we want to maximize 𝐽 with respect to {𝑐𝑡(𝑠𝑡), 𝑛𝑡(𝑠𝑡); ∀𝑠𝑡}𝑡≥0 and to minimize
with respect to Φ and with respect to {𝜃(𝑠𝑡); ∀𝑠𝑡}𝑡≥0.
The first-order conditions for the Ramsey problem for periods 𝑡 ≥ 1 and 𝑡 = 0, respectively, are

𝑐𝑡(𝑠𝑡)∶ (1 + Φ)𝑢𝑐(𝑠𝑡) + Φ [𝑢𝑐𝑐(𝑠𝑡)𝑐𝑡(𝑠𝑡) − 𝑢ℓ𝑐(𝑠𝑡)𝑛𝑡(𝑠𝑡)] − 𝜃𝑡(𝑠𝑡) = 0, 𝑡 ≥ 1
𝑛𝑡(𝑠𝑡)∶ − (1 + Φ)𝑢ℓ(𝑠𝑡) − Φ [𝑢𝑐ℓ(𝑠𝑡)𝑐𝑡(𝑠𝑡) − 𝑢ℓℓ(𝑠𝑡)𝑛𝑡(𝑠𝑡)] + 𝜃𝑡(𝑠𝑡) = 0, 𝑡 ≥ 1 (4.15)

and

𝑐0(𝑠0, 𝑏0)∶ (1 + Φ)𝑢𝑐(𝑠0, 𝑏0) + Φ [𝑢𝑐𝑐(𝑠0, 𝑏0)𝑐0(𝑠0, 𝑏0) − 𝑢ℓ𝑐(𝑠0, 𝑏0)𝑛0(𝑠0, 𝑏0)] − 𝜃0(𝑠0, 𝑏0)
− Φ𝑢𝑐𝑐(𝑠0, 𝑏0)𝑏0 = 0

𝑛0(𝑠0, 𝑏0)∶ − (1 + Φ)𝑢ℓ(𝑠0, 𝑏0) − Φ [𝑢𝑐ℓ(𝑠0, 𝑏0)𝑐0(𝑠0, 𝑏0) − 𝑢ℓℓ(𝑠0, 𝑏0)𝑛0(𝑠0, 𝑏0)] + 𝜃0(𝑠0, 𝑏0)
+ Φ𝑢𝑐ℓ(𝑠0, 𝑏0)𝑏0 = 0

(4.16)

Please note how these first-order conditions differ between 𝑡 = 0 and 𝑡 ≥ 1.
It is instructive to use first-order conditions (4.15) for 𝑡 ≥ 1 to eliminate the multipliers 𝜃𝑡(𝑠𝑡).
For convenience, we suppress the time subscript and the index 𝑠𝑡 and obtain

(1 + Φ)𝑢𝑐(𝑐, 1 − 𝑐 − 𝑔) + Φ[𝑐𝑢𝑐𝑐(𝑐, 1 − 𝑐 − 𝑔) − (𝑐 + 𝑔)𝑢ℓ𝑐(𝑐, 1 − 𝑐 − 𝑔)]
= (1 + Φ)𝑢ℓ(𝑐, 1 − 𝑐 − 𝑔) + Φ[𝑐𝑢𝑐ℓ(𝑐, 1 − 𝑐 − 𝑔) − (𝑐 + 𝑔)𝑢ℓℓ(𝑐, 1 − 𝑐 − 𝑔)] (4.17)

where we have imposed conditions (4.1) and (4.2).
Equation (4.17) is one equation that can be solved to express the unknown 𝑐 as a function of the exogenous variable 𝑔 and
the Lagrange multiplier Φ.
We also know that time 𝑡 = 0 quantities 𝑐0 and 𝑛0 satisfy

(1 + Φ)𝑢𝑐(𝑐, 1 − 𝑐 − 𝑔) + Φ[𝑐𝑢𝑐𝑐(𝑐, 1 − 𝑐 − 𝑔) − (𝑐 + 𝑔)𝑢ℓ𝑐(𝑐, 1 − 𝑐 − 𝑔)]
= (1 + Φ)𝑢ℓ(𝑐, 1 − 𝑐 − 𝑔) + Φ[𝑐𝑢𝑐ℓ(𝑐, 1 − 𝑐 − 𝑔) − (𝑐 + 𝑔)𝑢ℓℓ(𝑐, 1 − 𝑐 − 𝑔)] + Φ(𝑢𝑐𝑐 − 𝑢𝑐,ℓ)𝑏0

(4.18)

Notice that a counterpart to 𝑏0 does not appear in (4.17), so 𝑐 does not directly depend on it for 𝑡 ≥ 1.
But things are different for time 𝑡 = 0.
An analogous argument for the 𝑡 = 0 equations (4.16) leads to one equation that can be solved for 𝑐0 as a function of the
pair (𝑔(𝑠0), 𝑏0) and the Lagrange multiplier Φ.
These outcomes mean that the following statement would be true even when government purchases are history-dependent
functions 𝑔𝑡(𝑠𝑡) of the history of 𝑠𝑡.

4.2. A Competitive Equilibrium with Distorting Taxes 75

Advanced Dynamic Programming

Proposition: If government purchases are equal after two histories 𝑠𝑡 and ̃𝑠𝜏 for 𝑡, 𝜏 ≥ 0, i.e., if

𝑔𝑡(𝑠𝑡) = 𝑔𝜏(̃𝑠𝜏) = 𝑔

then it follows from (4.17) that the Ramsey choices of consumption and leisure, (𝑐𝑡(𝑠𝑡), ℓ𝑡(𝑠𝑡)) and (𝑐𝑗(̃𝑠𝜏), ℓ𝑗(̃𝑠𝜏)), are
identical.
The proposition asserts that the optimal allocation is a function of the currently realized quantity of government purchases
𝑔 only and does not depend on the specific history that preceded that realization of 𝑔.

4.2.5 The Ramsey Allocation for a Given Multiplier

Temporarily take Φ as given.
We shall compute 𝑐0(𝑠0, 𝑏0) and 𝑛0(𝑠0, 𝑏0) from the first-order conditions (4.16).
Evidently, for 𝑡 ≥ 1, 𝑐 and 𝑛 depend on the time 𝑡 realization of 𝑔 only.
But for 𝑡 = 0, 𝑐 and 𝑛 depend on both 𝑔0 and the government’s initial debt 𝑏0.
Thus, while 𝑏0 influences 𝑐0 and 𝑛0, there appears no analogous variable 𝑏𝑡 that influences 𝑐𝑡 and 𝑛𝑡 for 𝑡 ≥ 1.
The absence of 𝑏𝑡 as a direct determinant of the Ramsey allocation for 𝑡 ≥ 1 and its presence for 𝑡 = 0 is a symptom of
the time-inconsistency of a Ramsey plan.
Of course, 𝑏0 affects the Ramsey allocation for 𝑡 ≥ 1 indirectly through its effect on Φ.
Φ has to take a value that assures that the household and the government’s budget constraints are both satisfied at a
candidate Ramsey allocation and price system associated with that Φ.

4.2.6 Further Specialization

At this point, it is useful to specialize the model in the following ways.
We assume that 𝑠 is governed by a finite state Markov chain with states 𝑠 ∈ [1, … , 𝑆] and transition matrix Π, where

Π(𝑠′|𝑠) = Prob(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠)

Also, assume that government purchases 𝑔 are an exact time-invariant function 𝑔(𝑠) of 𝑠.
We maintain these assumptions throughout the remainder of this lecture.

4.2.7 Determining the Lagrange Multiplier

We complete the Ramsey plan by computing the Lagrange multiplier Φ on the implementability constraint (4.11).
Government budget balance restricts Φ via the following line of reasoning.
The household’s first-order conditions imply

(1 − 𝜏𝑡(𝑠𝑡)) = 𝑢𝑙(𝑠𝑡)
𝑢𝑐(𝑠𝑡) (4.19)

and the implied one-period Arrow securities prices

𝑝𝑡+1(𝑠𝑡+1|𝑠𝑡) = 𝛽Π(𝑠𝑡+1|𝑠𝑡)
𝑢𝑐(𝑠𝑡+1)
𝑢𝑐(𝑠𝑡) (4.20)

76 Chapter 4. Optimal Taxation with State-Contingent Debt

Advanced Dynamic Programming

Substituting from (4.19), (4.20), and the feasibility condition (4.2) into the recursive version (4.5) of the household budget
constraint gives

𝑢𝑐(𝑠𝑡)[𝑛𝑡(𝑠𝑡) − 𝑔𝑡(𝑠𝑡)] + 𝛽 ∑
𝑠𝑡+1

Π(𝑠𝑡+1|𝑠𝑡)𝑢𝑐(𝑠𝑡+1)𝑏𝑡+1(𝑠𝑡+1|𝑠𝑡)

= 𝑢𝑙(𝑠𝑡)𝑛𝑡(𝑠𝑡) + 𝑢𝑐(𝑠𝑡)𝑏𝑡(𝑠𝑡|𝑠𝑡−1)
(4.21)

Define 𝑥𝑡(𝑠𝑡) = 𝑢𝑐(𝑠𝑡)𝑏𝑡(𝑠𝑡|𝑠𝑡−1).
Notice that 𝑥𝑡(𝑠𝑡) appears on the right side of (4.21) while 𝛽 times the conditional expectation of 𝑥𝑡+1(𝑠𝑡+1) appears on
the left side.
Hence the equation shares much of the structure of a simple asset pricing equation with 𝑥𝑡 being analogous to the price
of the asset at time 𝑡.
We learned earlier that for a Ramsey allocation 𝑐𝑡(𝑠𝑡), 𝑛𝑡(𝑠𝑡), and 𝑏𝑡(𝑠𝑡|𝑠𝑡−1), and therefore also 𝑥𝑡(𝑠𝑡), are each func-
tions of 𝑠𝑡 only, being independent of the history 𝑠𝑡−1 for 𝑡 ≥ 1.
That means that we can express equation (4.21) as

𝑢𝑐(𝑠)[𝑛(𝑠) − 𝑔(𝑠)] + 𝛽 ∑
𝑠′

Π(𝑠′|𝑠)𝑥′(𝑠′) = 𝑢𝑙(𝑠)𝑛(𝑠) + 𝑥(𝑠) (4.22)

where 𝑠′ denotes a next period value of 𝑠 and 𝑥′(𝑠′) denotes a next period value of 𝑥.
Given 𝑛(𝑠) for 𝑠 = 1, … , 𝑆, equation (4.22) is easy to solve for 𝑥(𝑠) for 𝑠 = 1, … , 𝑆.
If we let �⃗�, ⃗𝑔, ⃗𝑥 denote 𝑆 × 1 vectors whose 𝑖th elements are the respective 𝑛, 𝑔, and 𝑥 values when 𝑠 = 𝑖, and let Π be
the transition matrix for the Markov state 𝑠, then we can express (4.22) as the matrix equation

�⃗�𝑐(�⃗� − ⃗𝑔) + 𝛽Π ⃗𝑥 = �⃗�𝑙�⃗� + ⃗𝑥 (4.23)

This is a system of 𝑆 linear equations in the 𝑆 × 1 vector 𝑥, whose solution is

⃗𝑥 = (𝐼 − 𝛽Π)−1[�⃗�𝑐(�⃗� − ⃗𝑔) − �⃗�𝑙�⃗�] (4.24)

In these equations, by �⃗�𝑐�⃗�, for example, we mean element-by-element multiplication of the two vectors.
After solving for ⃗𝑥, we can find 𝑏(𝑠𝑡|𝑠𝑡−1) in Markov state 𝑠𝑡 = 𝑠 from 𝑏(𝑠) = 𝑥(𝑠)

𝑢𝑐(𝑠) or the matrix equation

⃗𝑏 = ⃗𝑥
�⃗�𝑐

(4.25)

where division here means an element-by-element division of the respective components of the 𝑆 × 1 vectors ⃗𝑥 and �⃗�𝑐.
Here is a computational algorithm:

1. Start with a guess for the value for Φ, then use the first-order conditions and the feasibility conditions to compute
𝑐(𝑠𝑡), 𝑛(𝑠𝑡) for 𝑠 ∈ [1, … , 𝑆] and 𝑐0(𝑠0, 𝑏0) and 𝑛0(𝑠0, 𝑏0), given Φ.

• these are 2(𝑆 + 1) equations in 2(𝑆 + 1) unknowns.
2. Solve the 𝑆 equations (4.24) for the 𝑆 elements of ⃗𝑥.

• these depend on Φ.
3. Find a Φ that satisfies

𝑢𝑐,0𝑏0 = 𝑢𝑐,0(𝑛0 − 𝑔0) − 𝑢𝑙,0𝑛0 + 𝛽
𝑆

∑
𝑠=1

Π(𝑠|𝑠0)𝑥(𝑠) (4.26)

by gradually raising Φ if the left side of (4.26) exceeds the right side and lowering Φ if the left side is less than the
right side.

4.2. A Competitive Equilibrium with Distorting Taxes 77

Advanced Dynamic Programming

4. After computing a Ramsey allocation, recover the flat tax rate on labor from (4.8) and the implied one-period
Arrow securities prices from (4.9).

In summary, when 𝑔𝑡 is a time-invariant function of a Markov state 𝑠𝑡, a Ramsey plan can be constructed by solving
3𝑆 + 3 equations for 𝑆 components each of ⃗𝑐, �⃗�, and ⃗𝑥 together with 𝑛0, 𝑐0, and Φ.

4.2.8 Time Inconsistency

Let {𝜏𝑡(𝑠𝑡)}∞
𝑡=0, {𝑏𝑡+1(𝑠𝑡+1|𝑠𝑡)}∞

𝑡=0 be a time 0, state 𝑠0 Ramsey plan.
Then {𝜏𝑗(𝑠𝑗)}∞

𝑗=𝑡, {𝑏𝑗+1(𝑠𝑗+1|𝑠𝑗)}∞
𝑗=𝑡 is a time 𝑡, history 𝑠𝑡 continuation of a time 0, state 𝑠0 Ramsey plan.

A time 𝑡, history 𝑠𝑡 Ramsey plan is a Ramsey plan that starts from initial conditions 𝑠𝑡, 𝑏𝑡(𝑠𝑡|𝑠𝑡−1).
A time 𝑡, history 𝑠𝑡 continuation of a time 0, state 0 Ramsey plan is not a time 𝑡, history 𝑠𝑡 Ramsey plan.
The means that a Ramsey plan is not time consistent.
Another way to say the same thing is that a Ramsey plan is time inconsistent.
The reason is that a continuation Ramsey plan takes 𝑢𝑐𝑡𝑏𝑡(𝑠𝑡|𝑠𝑡−1) as given, not 𝑏𝑡(𝑠𝑡|𝑠𝑡−1).
We shall discuss this more below.

4.2.9 Specification with CRRA Utility

In our calculations below and in a subsequent lecture based on an extension of the Lucas-Stokey model by Aiyagari, Marcet,
Sargent, and Seppälä (2002) [AMSSeppala02], we shall modify the one-period utility function assumed above.
(We adopted the preceding utility specification because it was the one used in the original Lucas-Stokey paper [LS83].
We shall soon revert to that specification in a subsequent section.)
We will modify their specification by instead assuming that the representative agent has utility function

𝑢(𝑐, 𝑛) = 𝑐1−𝜎

1 − 𝜎 − 𝑛1+𝛾

1 + 𝛾
where 𝜎 > 0, 𝛾 > 0.
We continue to assume that

𝑐𝑡 + 𝑔𝑡 = 𝑛𝑡

We eliminate leisure from the model.
We also eliminate Lucas and Stokey’s restriction that ℓ𝑡 + 𝑛𝑡 ≤ 1.
We replace these two things with the assumption that labor 𝑛𝑡 ∈ [0, +∞].
With these adjustments, the analysis of Lucas and Stokey prevails once we make the following replacements

𝑢ℓ(𝑐, ℓ) ∼ −𝑢𝑛(𝑐, 𝑛)
𝑢𝑐(𝑐, ℓ) ∼ 𝑢𝑐(𝑐, 𝑛)

𝑢ℓ,ℓ(𝑐, ℓ) ∼ 𝑢𝑛𝑛(𝑐, 𝑛)
𝑢𝑐,𝑐(𝑐, ℓ) ∼ 𝑢𝑐,𝑐(𝑐, 𝑛)
𝑢𝑐,ℓ(𝑐, ℓ) ∼ 0

With these understandings, equations (4.17) and (4.18) simplify in the case of the CRRA utility function.

78 Chapter 4. Optimal Taxation with State-Contingent Debt

Advanced Dynamic Programming

They become

(1 + Φ)[𝑢𝑐(𝑐) + 𝑢𝑛(𝑐 + 𝑔)] + Φ[𝑐𝑢𝑐𝑐(𝑐) + (𝑐 + 𝑔)𝑢𝑛𝑛(𝑐 + 𝑔)] = 0 (4.27)

and

(1 + Φ)[𝑢𝑐(𝑐0) + 𝑢𝑛(𝑐0 + 𝑔0)] + Φ[𝑐0𝑢𝑐𝑐(𝑐0) + (𝑐0 + 𝑔0)𝑢𝑛𝑛(𝑐0 + 𝑔0)] − Φ𝑢𝑐𝑐(𝑐0)𝑏0 = 0 (4.28)

In equation (4.27), it is understood that 𝑐 and 𝑔 are each functions of the Markov state 𝑠.
In addition, the time 𝑡 = 0 budget constraint is satisfied at 𝑐0 and initial government debt 𝑏0:

𝑏0 + 𝑔0 = 𝜏0(𝑐0 + 𝑔0) + 𝛽
𝑆

∑
𝑠=1

Π(𝑠|𝑠0)𝑢𝑐(𝑠)
𝑢𝑐,0

𝑏1(𝑠) (4.29)

where 𝜏0 is the time 𝑡 = 0 tax rate.
In equation (4.29), it is understood that

𝜏0 = 1 − 𝑢𝑙,0
𝑢𝑐,0

4.2.10 Sequence Implementation

The above steps are implemented in a class called SequentialLS

class SequentialLS:

'''
Class that takes a preference object, state transition matrix,
and state contingent government expenditure plan as inputs, and
solves the sequential allocation problem described above.
It returns optimal allocations about consumption and labor supply,
as well as the multiplier on the implementability constraint Φ.
'''

def __init__(self,
pref,
π=np.full((2, 2), 0.5),
g=np.array([0.1, 0.2])):

Initialize from pref object attributes
self.β, self.π, self.g = pref.β, π, g
self.mc = MarkovChain(self.π)
self.S = len(π) # Number of states
self.pref = pref

Find the first best allocation
self.find_first_best()

def FOC_first_best(self, c, g):
'''
First order conditions that characterize
the first best allocation.
'''

(continues on next page)

4.2. A Competitive Equilibrium with Distorting Taxes 79

Advanced Dynamic Programming

(continued from previous page)

pref = self.pref
Uc, Ul = pref.Uc, pref.Ul

n = c + g
l = 1 - n

return Uc(c, l) - Ul(c, l)

def find_first_best(self):
'''
Find the first best allocation
'''
S, g = self.S, self.g

res = root(self.FOC_first_best, np.full(S, 0.5), args=(g,))

if (res.fun > 1e-10).any():
raise Exception('Could not find first best')

self.cFB = res.x
self.nFB = self.cFB + g

def FOC_time1(self, c, Φ, g):
'''
First order conditions that characterize
optimal time 1 allocation problems.
'''

pref = self.pref
Uc, Ucc, Ul, Ull, Ulc = pref.Uc, pref.Ucc, pref.Ul, pref.Ull, pref.Ulc

n = c + g
l = 1 - n

LHS = (1 + Φ) * Uc(c, l) + Φ * (c * Ucc(c, l) - n * Ulc(c, l))
RHS = (1 + Φ) * Ul(c, l) + Φ * (c * Ulc(c, l) - n * Ull(c, l))

diff = LHS - RHS

return diff

def time1_allocation(self, Φ):
'''
Computes optimal allocation for time t >= 1 for a given Φ
'''
pref = self.pref
S, g = self.S, self.g

use the first best allocation as intial guess
res = root(self.FOC_time1, self.cFB, args=(Φ, g))

if (res.fun > 1e-10).any():
raise Exception('Could not find LS allocation.')

c = res.x
n = c + g

(continues on next page)

80 Chapter 4. Optimal Taxation with State-Contingent Debt

Advanced Dynamic Programming

(continued from previous page)

l = 1 - n

Compute x
I = pref.Uc(c, n) * c - pref.Ul(c, l) * n
x = np.linalg.solve(np.eye(S) - self.β * self.π, I)

return c, n, x

def FOC_time0(self, c0, Φ, g0, b0):
'''
First order conditions that characterize
time 0 allocation problem.
'''

pref = self.pref
Ucc, Ulc = pref.Ucc, pref.Ulc

n0 = c0 + g0
l0 = 1 - n0

diff = self.FOC_time1(c0, Φ, g0)
diff -= Φ * (Ucc(c0, l0) - Ulc(c0, l0)) * b0

return diff

def implementability(self, Φ, b0, s0, cn0_arr):
'''
Compute the differences between the RHS and LHS
of the implementability constraint given Φ,
initial debt, and initial state.
'''

pref, π, g, β = self.pref, self.π, self.g, self.β
Uc, Ul = pref.Uc, pref.Ul
g0 = self.g[s0]

c, n, x = self.time1_allocation(Φ)

res = root(self.FOC_time0, cn0_arr[0], args=(Φ, g0, b0))
c0 = res.x
n0 = c0 + g0
l0 = 1 - n0

cn0_arr[:] = c0.item(), n0.item()

LHS = Uc(c0, l0) * b0
RHS = Uc(c0, l0) * c0 - Ul(c0, l0) * n0 + β * π[s0] @ x

return RHS - LHS

def time0_allocation(self, b0, s0):
'''
Finds the optimal time 0 allocation given
initial government debt b0 and state s0
'''

(continues on next page)

4.2. A Competitive Equilibrium with Distorting Taxes 81

Advanced Dynamic Programming

(continued from previous page)

use the first best allocation as initial guess
cn0_arr = np.array([self.cFB[s0], self.nFB[s0]])

res = root(self.implementability, 0., args=(b0, s0, cn0_arr))

if (res.fun > 1e-10).any():
raise Exception('Could not find time 0 LS allocation.')

Φ = res.x[0]
c0, n0 = cn0_arr

return Φ, c0, n0

def τ(self, c, n):
'''
Computes τ given c, n
'''
pref = self.pref
Uc, Ul = pref.Uc, pref.Ul

return 1 - Ul(c, 1-n) / Uc(c, 1-n)

def simulate(self, b0, s0, T, sHist=None):
'''
Simulates planners policies for T periods
'''
pref, π, β = self.pref, self.π, self.β
Uc = pref.Uc

if sHist is None:
sHist = self.mc.simulate(T, s0)

cHist, nHist, Bhist, τHist, ΦHist = np.empty((5, T))
RHist = np.empty(T-1)

Time 0
Φ, cHist[0], nHist[0] = self.time0_allocation(b0, s0)
τHist[0] = self.τ(cHist[0], nHist[0])
Bhist[0] = b0
ΦHist[0] = Φ

Time 1 onward
for t in range(1, T):

c, n, x = self.time1_allocation(Φ)
τ = self.τ(c, n)
u_c = Uc(c, 1-n)
s = sHist[t]
Eu_c = π[sHist[t-1]] @ u_c
cHist[t], nHist[t], Bhist[t], τHist[t] = c[s], n[s], x[s] / u_c[s], τ[s]
RHist[t-1] = Uc(cHist[t-1], 1-nHist[t-1]) / (β * Eu_c)
ΦHist[t] = Φ

gHist = self.g[sHist]
yHist = nHist

return [cHist, nHist, Bhist, τHist, gHist, yHist, sHist, ΦHist, RHist]

82 Chapter 4. Optimal Taxation with State-Contingent Debt

Advanced Dynamic Programming

4.3 Recursive Formulation of the Ramsey Problem

We now temporarily revert to Lucas and Stokey’s specification.
We start by noting that 𝑥𝑡(𝑠𝑡) = 𝑢𝑐(𝑠𝑡)𝑏𝑡(𝑠𝑡|𝑠𝑡−1) in equation (4.21) appears to be a purely “forward-looking” variable.
But 𝑥𝑡(𝑠𝑡) is a natural candidate for a state variable in a recursive formulation of the Ramsey problem, one that records
history-dependence and so is backward-looking.

4.3.1 Intertemporal Delegation

To express a Ramsey plan recursively, we imagine that a time 0 Ramsey planner is followed by a sequence of continuation
Ramsey planners at times 𝑡 = 1, 2, ….
A “continuation Ramsey planner” at time 𝑡 ≥ 1 has a different objective function and faces different constraints and state
variables than does the Ramsey planner at time 𝑡 = 0.
A key step in representing a Ramsey plan recursively is to regard the marginal utility scaled government debts 𝑥𝑡(𝑠𝑡) =
𝑢𝑐(𝑠𝑡)𝑏𝑡(𝑠𝑡|𝑠𝑡−1) as predetermined quantities that continuation Ramsey planners at times 𝑡 ≥ 1 are obligated to attain.
Continuation Ramsey planners do this by choosing continuation policies that induce the representative household to make
choices that imply that 𝑢𝑐(𝑠𝑡)𝑏𝑡(𝑠𝑡|𝑠𝑡−1) = 𝑥𝑡(𝑠𝑡).
A time 𝑡 ≥ 1 continuation Ramsey planner faces 𝑥𝑡, 𝑠𝑡 as state variables.
A time 𝑡 ≥ 1 continuation Ramsey planner delivers 𝑥𝑡 by choosing a suitable 𝑛𝑡, 𝑐𝑡 pair and a list of 𝑠𝑡+1-contingent
continuation quantities 𝑥𝑡+1 to bequeath to a time 𝑡 + 1 continuation Ramsey planner.
While a time 𝑡 ≥ 1 continuation Ramsey planner faces 𝑥𝑡, 𝑠𝑡 as state variables, the time 0 Ramsey planner faces 𝑏0, not
𝑥0, as a state variable.
Furthermore, the Ramsey planner cares about (𝑐0(𝑠0), ℓ0(𝑠0)), while continuation Ramsey planners do not.
The time 0 Ramsey planner hands a state-contingent function that make 𝑥1 a function of 𝑠1 to a time 1, state 𝑠1 contin-
uation Ramsey planner.
These lines of delegated authorities and responsibilities across time express the continuation Ramsey planners’ obligations
to implement their parts of an original Ramsey plan that had been designed once-and-for-all at time 0.

4.3.2 Two Bellman Equations

After 𝑠𝑡 has been realized at time 𝑡 ≥ 1, the state variables confronting the time 𝑡 continuation Ramsey planner are
(𝑥𝑡, 𝑠𝑡).

• Let 𝑉 (𝑥, 𝑠) be the value of a continuation Ramsey plan at 𝑥𝑡 = 𝑥, 𝑠𝑡 = 𝑠 for 𝑡 ≥ 1.
• Let 𝑊(𝑏, 𝑠) be the value of a Ramsey plan at time 0 at 𝑏0 = 𝑏 and 𝑠0 = 𝑠.

We work backward by preparing a Bellman equation for 𝑉 (𝑥, 𝑠) first, then a Bellman equation for 𝑊(𝑏, 𝑠).

4.3. Recursive Formulation of the Ramsey Problem 83

Advanced Dynamic Programming

4.3.3 The Continuation Ramsey Problem

The Bellman equation for a time 𝑡 ≥ 1 continuation Ramsey planner is

𝑉 (𝑥, 𝑠) = max
𝑛,{𝑥′(𝑠′)}

𝑢(𝑛 − 𝑔(𝑠), 1 − 𝑛) + 𝛽 ∑
𝑠′∈𝑆

Π(𝑠′|𝑠)𝑉 (𝑥′, 𝑠′) (4.30)

where maximization over 𝑛 and the 𝑆 elements of 𝑥′(𝑠′) is subject to the single implementability constraint for 𝑡 ≥ 1:

𝑥 = 𝑢𝑐(𝑛 − 𝑔(𝑠)) − 𝑢𝑙𝑛 + 𝛽 ∑
𝑠′∈𝑆

Π(𝑠′|𝑠)𝑥′(𝑠′) (4.31)

Here 𝑢𝑐 and 𝑢𝑙 are today’s values of the marginal utilities.
For each given value of 𝑥, 𝑠, the continuation Ramsey planner chooses 𝑛 and 𝑥′(𝑠′) for each 𝑠′ ∈ 𝑆.
Associated with a value function 𝑉 (𝑥, 𝑠) that solves Bellman equation (4.30) are 𝑆 + 1 time-invariant policy functions

𝑛𝑡 = 𝑓(𝑥𝑡, 𝑠𝑡), 𝑡 ≥ 1
𝑥𝑡+1(𝑠𝑡+1) = ℎ(𝑠𝑡+1; 𝑥𝑡, 𝑠𝑡), 𝑠𝑡+1 ∈ 𝑆, 𝑡 ≥ 1 (4.32)

4.3.4 The Ramsey Problem

The Bellman equation of the time 0 Ramsey planner is

𝑊(𝑏0, 𝑠0) = max
𝑛0,{𝑥′(𝑠1)}

𝑢(𝑛0 − 𝑔0, 1 − 𝑛0) + 𝛽 ∑
𝑠1∈𝑆

Π(𝑠1|𝑠0)𝑉 (𝑥′(𝑠1), 𝑠1) (4.33)

where maximization over 𝑛0 and the 𝑆 elements of 𝑥′(𝑠1) is subject to the time 0 implementability constraint

𝑢𝑐,0𝑏0 = 𝑢𝑐,0(𝑛0 − 𝑔0) − 𝑢𝑙,0𝑛0 + 𝛽 ∑
𝑠1∈𝑆

Π(𝑠1|𝑠0)𝑥′(𝑠1) (4.34)

coming from restriction (4.26).
Associated with a value function 𝑊(𝑏0, 𝑛0) that solves Bellman equation (4.33) are 𝑆 + 1 time 0 policy functions

𝑛0 = 𝑓0(𝑏0, 𝑠0)
𝑥1(𝑠1) = ℎ0(𝑠1; 𝑏0, 𝑠0) (4.35)

Notice the appearance of state variables (𝑏0, 𝑠0) in the time 0 policy functions for the Ramsey planner as compared to
(𝑥𝑡, 𝑠𝑡) in the policy functions (4.32) for the time 𝑡 ≥ 1 continuation Ramsey planners.
The value function 𝑉 (𝑥𝑡, 𝑠𝑡) of the time 𝑡 continuation Ramsey planner equals 𝐸𝑡 ∑∞

𝜏=𝑡 𝛽𝜏−𝑡𝑢(𝑐𝜏 , 𝑙𝜏), where consump-
tion and leisure processes are evaluated along the original time 0 Ramsey plan.

4.3.5 First-Order Conditions

Attach a Lagrange multiplier Φ1(𝑥, 𝑠) to constraint (4.31) and a Lagrange multiplier Φ0 to constraint (4.26).
Time 𝑡 ≥ 1: First-order conditions for the time 𝑡 ≥ 1 constrained maximization problem on the right side of the
continuation Ramsey planner’s Bellman equation (4.30) are

𝛽Π(𝑠′|𝑠)𝑉𝑥(𝑥′, 𝑠′) − 𝛽Π(𝑠′|𝑠)Φ1 = 0 (4.36)

for 𝑥′(𝑠′) and

(1 + Φ1)(𝑢𝑐 − 𝑢𝑙) + Φ1 [𝑛(𝑢𝑙𝑙 − 𝑢𝑙𝑐) + (𝑛 − 𝑔(𝑠))(𝑢𝑐𝑐 − 𝑢𝑙𝑐)] = 0 (4.37)

84 Chapter 4. Optimal Taxation with State-Contingent Debt

Advanced Dynamic Programming

for 𝑛.
Given Φ1, equation (4.37) is one equation to be solved for 𝑛 as a function of 𝑠 (or of 𝑔(𝑠)).
Equation (4.36) implies 𝑉𝑥(𝑥′, 𝑠′) = Φ1, while an envelope condition is 𝑉𝑥(𝑥, 𝑠) = Φ1, so it follows that

𝑉𝑥(𝑥′, 𝑠′) = 𝑉𝑥(𝑥, 𝑠) = Φ1(𝑥, 𝑠) (4.38)

Time 𝑡 = 0: For the time 0 problem on the right side of the Ramsey planner’s Bellman equation (4.33), first-order
conditions are

𝑉𝑥(𝑥(𝑠1), 𝑠1) = Φ0 (4.39)

for 𝑥(𝑠1), 𝑠1 ∈ 𝑆, and

(1 + Φ0)(𝑢𝑐,0 − 𝑢𝑛,0) + Φ0[𝑛0(𝑢𝑙𝑙,0 − 𝑢𝑙𝑐,0) + (𝑛0 − 𝑔(𝑠0))(𝑢𝑐𝑐,0 − 𝑢𝑐𝑙,0)]
− Φ0(𝑢𝑐𝑐,0 − 𝑢𝑐𝑙,0)𝑏0 = 0

(4.40)

Notice similarities and differences between the first-order conditions for 𝑡 ≥ 1 and for 𝑡 = 0.
An additional term is present in (4.40) except in three special cases

• 𝑏0 = 0, or
• 𝑢𝑐 is constant (i.e., preferences are quasi-linear in consumption), or
• initial government assets are sufficiently large to finance all government purchases with interest earnings from those
assets so that Φ0 = 0

Except in these special cases, the allocation and the labor tax rate as functions of 𝑠𝑡 differ between dates 𝑡 = 0 and
subsequent dates 𝑡 ≥ 1.
Naturally, the first-order conditions in this recursive formulation of the Ramsey problem agree with the first-order con-
ditions derived when we first formulated the Ramsey plan in the space of sequences.

4.3.6 State Variable Degeneracy

Equations (4.38) and (4.39) imply that Φ0 = Φ1 and that

𝑉𝑥(𝑥𝑡, 𝑠𝑡) = Φ0 (4.41)

for all 𝑡 ≥ 1.
When 𝑉 is concave in 𝑥, this implies state-variable degeneracy along a Ramsey plan in the sense that for 𝑡 ≥ 1, 𝑥𝑡 will
be a time-invariant function of 𝑠𝑡.
Given Φ0, this function mapping 𝑠𝑡 into 𝑥𝑡 can be expressed as a vector ⃗𝑥 that solves equation (4.34) for 𝑛 and 𝑐 as
functions of 𝑔 that are associated with Φ = Φ0.

4.3.7 Manifestations of Time Inconsistency

While the marginal utility adjusted level of government debt 𝑥𝑡 is a key state variable for the continuation Ramsey planners
at 𝑡 ≥ 1, it is not a state variable at time 0.
The time 0 Ramsey planner faces 𝑏0, not 𝑥0 = 𝑢𝑐,0𝑏0, as a state variable.
The discrepancy in state variables faced by the time 0 Ramsey planner and the time 𝑡 ≥ 1 continuation Ramsey planners
captures the differing obligations and incentives faced by the time 0 Ramsey planner and the time 𝑡 ≥ 1 continuation
Ramsey planners.

4.3. Recursive Formulation of the Ramsey Problem 85

Advanced Dynamic Programming

• The time 0 Ramsey planner is obligated to honor government debt 𝑏0 measured in time 0 consumption goods.
• The time 0 Ramsey planner can manipulate the value of government debt as measured by 𝑢𝑐,0𝑏0.
• In contrast, time 𝑡 ≥ 1 continuation Ramsey planners are obligated not to alter values of debt, as measured by

𝑢𝑐,𝑡𝑏𝑡, that they inherit from a preceding Ramsey planner or continuation Ramsey planner.
When government expenditures 𝑔𝑡 are a time-invariant function of a Markov state 𝑠𝑡, a Ramsey plan and associated
Ramsey allocation feature marginal utilities of consumption 𝑢𝑐(𝑠𝑡) that, given Φ, for 𝑡 ≥ 1 depend only on 𝑠𝑡, but that
for 𝑡 = 0 depend on 𝑏0 as well.
This means that 𝑢𝑐(𝑠𝑡) will be a time-invariant function of 𝑠𝑡 for 𝑡 ≥ 1, but except when 𝑏0 = 0, a different function for
𝑡 = 0.
This in turn means that prices of one-period Arrow securities 𝑝𝑡+1(𝑠𝑡+1|𝑠𝑡) = 𝑝(𝑠𝑡+1|𝑠𝑡) will be the same time-invariant
functions of (𝑠𝑡+1, 𝑠𝑡) for 𝑡 ≥ 1, but a different function 𝑝0(𝑠1|𝑠0) for 𝑡 = 0, except when 𝑏0 = 0.
The differences between these time 0 and time 𝑡 ≥ 1 objects reflect the Ramsey planner’s incentive to manipulate Arrow
security prices and, through them, the value of initial government debt 𝑏0.

4.3.8 Recursive Implementation

The above steps are implemented in a class called RecursiveLS.

class RecursiveLS:

'''
Compute the planner's allocation by solving Bellman
equation.
'''

def __init__(self,
pref,
x_grid,
π=np.full((2, 2), 0.5),
g=np.array([0.1, 0.2])):

self.π, self.g, self.S = π, g, len(π)
self.pref, self.x_grid = pref, x_grid

bounds = np.empty((self.S, 2))

bound for n
bounds[0] = 0, 1

bound for xprime
for s in range(self.S-1):

bounds[s+1] = x_grid.min(), x_grid.max()

self.bounds = bounds

initialization of time 1 value function
self.V = None

def time1_allocation(self, V=None, tol=1e-7):
'''
Solve the optimal time 1 allocation problem
by iterating Bellman value function.

(continues on next page)

86 Chapter 4. Optimal Taxation with State-Contingent Debt

Advanced Dynamic Programming

(continued from previous page)

'''

π, g, S = self.π, self.g, self.S
pref, x_grid, bounds = self.pref, self.x_grid, self.bounds

initial guess of value function
if V is None:

V = np.zeros((len(x_grid), S))

initial guess of policy
z = np.empty((len(x_grid), S, S+2))

guess of n
z[:, :, 1] = 0.5

guess of xprime
for s in range(S):

for i in range(S-1):
z[:, s, i+2] = x_grid

while True:
value function iteration
V_new, z_new = T(V, z, pref, π, g, x_grid, bounds)

if np.max(np.abs(V - V_new)) < tol:
break

V = V_new
z = z_new

self.V = V_new
self.z1 = z_new
self.c1 = z_new[:, :, 0]
self.n1 = z_new[:, :, 1]
self.xprime1 = z_new[:, :, 2:]

return V_new, z_new

def time0_allocation(self, b0, s0):
'''
Find the optimal time 0 allocation by maximization.
'''

if self.V is None:
self.time1_allocation()

π, g, S = self.π, self.g, self.S
pref, x_grid, bounds = self.pref, self.x_grid, self.bounds
V, z1 = self.V, self.z1

x = 1. # x is arbitrary
res = nelder_mead(obj_V,

z1[0, s0, 1:-1],
args=(x, s0, V, pref, π, g, x_grid, b0),
bounds=bounds,
tol_f=1e-10)

(continues on next page)

4.3. Recursive Formulation of the Ramsey Problem 87

Advanced Dynamic Programming

(continued from previous page)

n0, xprime0 = IC(res.x, x, s0, b0, pref, π, g)
c0 = n0 - g[s0]
z0 = np.array([c0, n0, *xprime0])

self.z0 = z0
self.n0 = n0
self.c0 = n0 - g[s0]
self.xprime0 = xprime0

return z0

def τ(self, c, n):
'''
Computes τ given c, n
'''
pref = self.pref
uc, ul = pref.Uc(c, 1-n), pref.Ul(c, 1-n)

return 1 - ul / uc

def simulate(self, b0, s0, T, sHist=None):
'''
Simulates Ramsey plan for T periods
'''
pref, π = self.pref, self.π
Uc = pref.Uc

if sHist is None:
sHist = self.mc.simulate(T, s0)

cHist, nHist, Bhist, τHist, xHist = np.empty((5, T))
RHist = np.zeros(T-1)

Time 0
self.time0_allocation(b0, s0)
cHist[0], nHist[0], xHist[0] = self.c0, self.n0, self.xprime0[s0]
τHist[0] = self.τ(cHist[0], nHist[0])
Bhist[0] = b0

Time 1 onward
for t in range(1, T):

s, x = sHist[t], xHist[t-1]
cHist[t] = np.interp(x, self.x_grid, self.c1[:, s])
nHist[t] = np.interp(x, self.x_grid, self.n1[:, s])

τHist[t] = self.τ(cHist[t], nHist[t])

Bhist[t] = x / Uc(cHist[t], 1-nHist[t])

c, n = np.empty((2, self.S))
for sprime in range(self.S):

c[sprime] = np.interp(x, x_grid, self.c1[:, sprime])
n[sprime] = np.interp(x, x_grid, self.n1[:, sprime])

Euc = π[sHist[t-1]] @ Uc(c, 1-n)
RHist[t-1] = Uc(cHist[t-1], 1-nHist[t-1]) / (self.pref.β * Euc)

(continues on next page)

88 Chapter 4. Optimal Taxation with State-Contingent Debt

Advanced Dynamic Programming

(continued from previous page)

gHist = self.g[sHist]
yHist = nHist

if t < T-1:
sprime = sHist[t+1]
xHist[t] = np.interp(x, self.x_grid, self.xprime1[:, s, sprime])

return [cHist, nHist, Bhist, τHist, gHist, yHist, xHist, RHist]

Helper functions

@njit(parallel=True)
def T(V, z, pref, π, g, x_grid, bounds):

'''
One step iteration of Bellman value function.
'''

S = len(π)

V_new = np.empty_like(V)
z_new = np.empty_like(z)

for i in prange(len(x_grid)):
x = x_grid[i]
for s in prange(S):

res = nelder_mead(obj_V,
z[i, s, 1:-1],
args=(x, s, V, pref, π, g, x_grid),
bounds=bounds,
tol_f=1e-10)

optimal policy
n, xprime = IC(res.x, x, s, None, pref, π, g)
z_new[i, s, 0] = n - g[s] # c
z_new[i, s, 1] = n # n
z_new[i, s, 2:] = xprime # xprime

V_new[i, s] = res.fun

return V_new, z_new

@njit
def obj_V(z_sub, x, s, V, pref, π, g, x_grid, b0=None):

'''
The objective on the right hand side of the Bellman equation.
z_sub contains guesses of n and xprime[:-1].
'''

S = len(π)
β, U = pref.β, pref.U

find (n, xprime) that satisfies implementability constraint
n, xprime = IC(z_sub, x, s, b0, pref, π, g)
c, l = n-g[s], 1-n

(continues on next page)

4.3. Recursive Formulation of the Ramsey Problem 89

Advanced Dynamic Programming

(continued from previous page)

if xprime[-1] violates bound, return large penalty
if (xprime[-1] < x_grid.min()):

return -1e9 * (1 + np.abs(xprime[-1] - x_grid.min()))
elif (xprime[-1] > x_grid.max()):

return -1e9 * (1 + np.abs(xprime[-1] - x_grid.max()))

prepare Vprime vector
Vprime = np.empty(S)
for sprime in range(S):

Vprime[sprime] = np.interp(xprime[sprime], x_grid, V[:, sprime])

compute the objective value
obj = U(c, l) + β * π[s] @ Vprime

return obj

@njit
def IC(z_sub, x, s, b0, pref, π, g):

'''
Find xprime[-1] that satisfies the implementability condition
given the guesses of n and xprime[:-1].
'''

β, Uc, Ul = pref.β, pref.Uc, pref.Ul

n = z_sub[0]
xprime = np.empty(len(π))
xprime[:-1] = z_sub[1:]

c, l = n-g[s], 1-n
uc = Uc(c, l)
ul = Ul(c, l)

if b0 is None:
diff = x

else:
diff = uc * b0

diff -= uc * (n - g[s]) - ul * n + β * π[s][:-1] @ xprime[:-1]
xprime[-1] = diff / (β * π[s][-1])

return n, xprime

4.4 Examples

We return to the setup with CRRA preferences described above.

90 Chapter 4. Optimal Taxation with State-Contingent Debt

Advanced Dynamic Programming

4.4.1 Anticipated One-Period War

This example illustrates in a simple setting how a Ramsey planner manages risk.
Government expenditures are known for sure in all periods except one

• For 𝑡 < 3 and 𝑡 > 3 we assume that 𝑔𝑡 = 𝑔𝑙 = 0.1.
• At 𝑡 = 3 a war occurs with probability 0.5.

– If there is war, 𝑔3 = 𝑔ℎ = 0.2
– If there is no war 𝑔3 = 𝑔𝑙 = 0.1

We define the components of the state vector as the following six (𝑡, 𝑔) pairs: (0, 𝑔𝑙), (1, 𝑔𝑙), (2, 𝑔𝑙), (3, 𝑔𝑙), (3, 𝑔ℎ), (𝑡 ≥
4, 𝑔𝑙).
We think of these 6 states as corresponding to 𝑠 = 1, 2, 3, 4, 5, 6.
The transition matrix is

Π =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0.5 0.5 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Government expenditures at each state are

𝑔 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.1
0.1
0.1
0.1
0.2
0.1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We assume that the representative agent has utility function

𝑢(𝑐, 𝑛) = 𝑐1−𝜎

1 − 𝜎 − 𝑛1+𝛾

1 + 𝛾
and set 𝜎 = 2, 𝛾 = 2, and the discount factor 𝛽 = 0.9.

Note: For convenience in terms of matching our code, we have expressed utility as a function of 𝑛 rather than leisure 𝑙.

This utility function is implemented in the class CRRAutility.

crra_util_data = [
('β', float64),
('σ', float64),
('γ', float64)

]

@jitclass(crra_util_data)
class CRRAutility:

def __init__(self,
β=0.9,

(continues on next page)

4.4. Examples 91

Advanced Dynamic Programming

(continued from previous page)

σ=2,
γ=2):

self.β, self.σ, self.γ = β, σ, γ

Utility function
def U(self, c, l):

Note: `l` should not be interpreted as labor, it is an auxiliary
variable used to conveniently match the code and the equations
in the lecture
σ = self.σ
if σ == 1.:

U = np.log(c)
else:

U = (c**(1 - σ) - 1) / (1 - σ)
return U - (1-l) ** (1 + self.γ) / (1 + self.γ)

Derivatives of utility function
def Uc(self, c, l):

return c ** (-self.σ)

def Ucc(self, c, l):
return -self.σ * c ** (-self.σ - 1)

def Ul(self, c, l):
return (1-l) ** self.γ

def Ull(self, c, l):
return -self.γ * (1-l) ** (self.γ - 1)

def Ucl(self, c, l):
return 0

def Ulc(self, c, l):
return 0

We set initial government debt 𝑏0 = 1.
We can now plot the Ramsey tax under both realizations of time 𝑡 = 3 government expenditures

• black when 𝑔3 = .1, and
• red when 𝑔3 = .2

π = np.array([[0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0],
[0, 0, 0, 0.5, 0.5, 0],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1]])

g = np.array([0.1, 0.1, 0.1, 0.2, 0.1, 0.1])
crra_pref = CRRAutility()

Solve sequential problem
seq = SequentialLS(crra_pref, π=π, g=g)
sHist_h = np.array([0, 1, 2, 3, 5, 5, 5])

(continues on next page)

92 Chapter 4. Optimal Taxation with State-Contingent Debt

Advanced Dynamic Programming

(continued from previous page)

sHist_l = np.array([0, 1, 2, 4, 5, 5, 5])
sim_seq_h = seq.simulate(1, 0, 7, sHist_h)
sim_seq_l = seq.simulate(1, 0, 7, sHist_l)

fig, axes = plt.subplots(3, 2, figsize=(14, 10))
titles = ['Consumption', 'Labor Supply', 'Government Debt',

'Tax Rate', 'Government Spending', 'Output']

for ax, title, sim_l, sim_h in zip(axes.flatten(),
titles,
sim_seq_l[:6],
sim_seq_h[:6]):

ax.set(title=title)
ax.plot(sim_l, '-ok', sim_h, '-or', alpha=0.7)
ax.grid()

plt.tight_layout()
plt.show()

Tax smoothing
• the tax rate is constant for all 𝑡 ≥ 1

– For 𝑡 ≥ 1, 𝑡 ≠ 3, this is a consequence of 𝑔𝑡 being the same at all those dates.
– For 𝑡 = 3, it is a consequence of the special one-period utility function that we have assumed.
– Under other one-period utility functions, the time 𝑡 = 3 tax rate could be either higher or lower than for dates

𝑡 ≥ 1, 𝑡 ≠ 3.

4.4. Examples 93

Advanced Dynamic Programming

• the tax rate is the same at 𝑡 = 3 for both the high 𝑔𝑡 outcome and the low 𝑔𝑡 outcome
We have assumed that at 𝑡 = 0, the government owes positive debt 𝑏0.
It sets the time 𝑡 = 0 tax rate partly with an eye to reducing the value 𝑢𝑐,0𝑏0 of 𝑏0.
It does this by increasing consumption at time 𝑡 = 0 relative to consumption in later periods.
This has the consequence of lowering the time 𝑡 = 0 value of the gross interest rate for risk-free loans between periods 𝑡
and 𝑡 + 1, which equals

𝑅𝑡 = 𝑢𝑐,𝑡
𝛽𝔼𝑡[𝑢𝑐,𝑡+1]

A tax policy that makes time 𝑡 = 0 consumption be higher than time 𝑡 = 1 consumption evidently decreases the risk-free
rate one-period interest rate, 𝑅𝑡, at 𝑡 = 0.
Lowering the time 𝑡 = 0 risk-free interest rate makes time 𝑡 = 0 consumption goods cheaper relative to consumption
goods at later dates, thereby lowering the value 𝑢𝑐,0𝑏0 of initial government debt 𝑏0.
We see this in a figure below that plots the time path for the risk-free interest rate under both realizations of the time
𝑡 = 3 government expenditure shock.
The following plot illustrates how the government lowers the interest rate at time 0 by raising consumption

fix, ax = plt.subplots(figsize=(8, 5))
ax.set_title('Gross Interest Rate')
ax.plot(sim_seq_l[-1], '-ok', sim_seq_h[-1], '-or', alpha=0.7)
ax.grid()
plt.show()

94 Chapter 4. Optimal Taxation with State-Contingent Debt

Advanced Dynamic Programming

4.4.2 Government Saving

At time 𝑡 = 0 the government evidently dissaves since 𝑏1 > 𝑏0.
• This is a consequence of it setting a lower tax rate at 𝑡 = 0, implying more consumption at 𝑡 = 0.

At time 𝑡 = 1, the government evidently saves since it has set the tax rate sufficiently high to allow it to set 𝑏2 < 𝑏1.
• Its motive for doing this is that it anticipates a likely war at 𝑡 = 3.

At time 𝑡 = 2 the government trades state-contingent Arrow securities to hedge against war at 𝑡 = 3.
• It purchases a security that pays off when 𝑔3 = 𝑔ℎ.
• It sells a security that pays off when 𝑔3 = 𝑔𝑙.
• These purchases are designed in such a way that regardless of whether or not there is a war at 𝑡 = 3, the government
will begin period 𝑡 = 4 with the same government debt.

• The time 𝑡 = 4 debt level can be serviced with revenues from the constant tax rate set at times 𝑡 ≥ 1.
At times 𝑡 ≥ 4 the government rolls over its debt, knowing that the tax rate is set at a level that raises enough revenue to
pay for government purchases and interest payments on its debt.

4.4.3 Time 0 Manipulation of Interest Rate

We have seen that when 𝑏0 > 0, the Ramsey plan sets the time 𝑡 = 0 tax rate partly with an eye toward lowering a
risk-free interest rate for one-period loans between times 𝑡 = 0 and 𝑡 = 1.
By lowering this interest rate, the plan makes time 𝑡 = 0 goods cheap relative to consumption goods at later times.
By doing this, it lowers the value of time 𝑡 = 0 debt that it has inherited and must finance.

4.4.4 Time 0 and Time-Inconsistency

In the preceding example, the Ramsey tax rate at time 0 differs from its value at time 1.
To explore what is going on here, let’s simplify things by removing the possibility of war at time 𝑡 = 3.
The Ramsey problem then includes no randomness because 𝑔𝑡 = 𝑔𝑙 for all 𝑡.
The figure below plots the Ramsey tax rates and gross interest rates at time 𝑡 = 0 and time 𝑡 ≥ 1 as functions of the initial
government debt (using the sequential allocation solution and a CRRA utility function defined above)

tax_seq = SequentialLS(CRRAutility(), g=np.array([0.15]), π=np.ones((1, 1)))

n = 100
tax_policy = np.empty((n, 2))
interest_rate = np.empty((n, 2))
gov_debt = np.linspace(-1.5, 1, n)

for i in range(n):
tax_policy[i] = tax_seq.simulate(gov_debt[i], 0, 2)[3]
interest_rate[i] = tax_seq.simulate(gov_debt[i], 0, 3)[-1]

fig, axes = plt.subplots(2, 1, figsize=(10,8), sharex=True)
titles = ['Tax Rate', 'Gross Interest Rate']

for ax, title, plot in zip(axes, titles, [tax_policy, interest_rate]):

(continues on next page)

4.4. Examples 95

Advanced Dynamic Programming

(continued from previous page)

ax.plot(gov_debt, plot[:, 0], gov_debt, plot[:, 1], lw=2)
ax.set(title=title, xlim=(min(gov_debt), max(gov_debt)))
ax.grid()

axes[0].legend(('Time $t=0$', 'Time $t \geq 1$'))
axes[1].set_xlabel('Initial Government Debt')

fig.tight_layout()
plt.show()

The figure indicates that if the government enters with positive debt, it sets a tax rate at 𝑡 = 0 that is less than all later tax
rates.
By setting a lower tax rate at 𝑡 = 0, the government raises consumption, which reduces the value 𝑢𝑐,0𝑏0 of its initial debt.
It does this by increasing 𝑐0 and thereby lowering 𝑢𝑐,0.
Conversely, if 𝑏0 < 0, the Ramsey planner sets the tax rate at 𝑡 = 0 higher than in subsequent periods.
A side effect of lowering time 𝑡 = 0 consumption is that it lowers the one-period interest rate at time 𝑡 = 0 below that of
subsequent periods.
There are only two values of initial government debt at which the tax rate is constant for all 𝑡 ≥ 0.
The first is 𝑏0 = 0

96 Chapter 4. Optimal Taxation with State-Contingent Debt

Advanced Dynamic Programming

• Here the government can’t use the 𝑡 = 0 tax rate to alter the value of the initial debt.
The second occurs when the government enters with sufficiently large assets that the Ramsey planner can achieve first
best and sets 𝜏𝑡 = 0 for all 𝑡.
It is only for these two values of initial government debt that the Ramsey plan is time-consistent.
Another way of saying this is that, except for these two values of initial government debt, a continuation of a Ramsey plan
is not a Ramsey plan.
To illustrate this, consider a Ramsey planner who starts with an initial government debt 𝑏1 associated with one of the
Ramsey plans computed above.
Call 𝜏𝑅

1 the time 𝑡 = 0 tax rate chosen by the Ramsey planner confronting this value for initial government debt govern-
ment.
The figure below shows both the tax rate at time 1 chosen by our original Ramsey planner and what a new Ramsey planner
would choose for its time 𝑡 = 0 tax rate

tax_seq = SequentialLS(CRRAutility(), g=np.array([0.15]), π=np.ones((1, 1)))

n = 100
tax_policy = np.empty((n, 2))
τ_reset = np.empty((n, 2))
gov_debt = np.linspace(-1.5, 1, n)

for i in range(n):
tax_policy[i] = tax_seq.simulate(gov_debt[i], 0, 2)[3]
τ_reset[i] = tax_seq.simulate(gov_debt[i], 0, 1)[3]

fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(gov_debt, tax_policy[:, 1], gov_debt, τ_reset, lw=2)
ax.set(xlabel='Initial Government Debt', title='Tax Rate',

xlim=(min(gov_debt), max(gov_debt)))
ax.legend((r'τ_1', r'τ_1^R'))
ax.grid()

fig.tight_layout()
plt.show()

4.4. Examples 97

Advanced Dynamic Programming

The tax rates in the figure are equal for only two values of initial government debt.

4.4.5 Tax Smoothing and non-CRRA Preferences

The complete tax smoothing for 𝑡 ≥ 1 in the preceding example is a consequence of our having assumed CRRA prefer-
ences.
To see what is driving this outcome, we begin by noting that the Ramsey tax rate for 𝑡 ≥ 1 is a time-invariant function
𝜏(Φ, 𝑔) of the Lagrange multiplier on the implementability constraint and government expenditures.
For CRRA preferences, we can exploit the relations 𝑈𝑐𝑐𝑐 = −𝜎𝑈𝑐 and 𝑈𝑛𝑛𝑛 = 𝛾𝑈𝑛 to derive

(1 + (1 − 𝜎)Φ)𝑈𝑐
(1 + (1 − 𝛾)Φ)𝑈𝑛

= 1

from the first-order conditions.
This equation immediately implies that the tax rate is constant.
For other preferences, the tax rate may not be constant.
For example, let the period utility function be

𝑢(𝑐, 𝑛) = log(𝑐) + 0.69 log(1 − 𝑛)

We will create a new class LogUtility to represent this utility function

log_util_data = [
('β', float64),
('ψ', float64)

]

@jitclass(log_util_data)

(continues on next page)

98 Chapter 4. Optimal Taxation with State-Contingent Debt

Advanced Dynamic Programming

(continued from previous page)

class LogUtility:

def __init__(self,
β=0.9,
ψ=0.69):

self.β, self.ψ = β, ψ

Utility function
def U(self, c, l):

return np.log(c) + self.ψ * np.log(l)

Derivatives of utility function
def Uc(self, c, l):

return 1 / c

def Ucc(self, c, l):
return -c**(-2)

def Ul(self, c, l):
return self.ψ / l

def Ull(self, c, l):
return -self.ψ / l**2

def Ucl(self, c, l):
return 0

def Ulc(self, c, l):
return 0

Also, suppose that 𝑔𝑡 follows a two-state IID process with equal probabilities attached to 𝑔𝑙 and 𝑔ℎ.
To compute the tax rate, we will use both the sequential and recursive approaches described above.
The figure below plots a sample path of the Ramsey tax rate

log_example = LogUtility()
Solve sequential problem
seq_log = SequentialLS(log_example)

Initialize grid for value function iteration and solve
x_grid = np.linspace(-3., 3., 200)

Solve recursive problem
rec_log = RecursiveLS(log_example, x_grid)

T_length = 20
sHist = np.array([0, 0, 0, 0, 0,

0, 0, 0, 1, 1,
0, 0, 0, 1, 1,
1, 1, 1, 1, 0])

Simulate
sim_seq = seq_log.simulate(0.5, 0, T_length, sHist)
sim_rec = rec_log.simulate(0.5, 0, T_length, sHist)

(continues on next page)

4.4. Examples 99

Advanced Dynamic Programming

(continued from previous page)

fig, axes = plt.subplots(3, 2, figsize=(14, 10))
titles = ['Consumption', 'Labor Supply', 'Government Debt',

'Tax Rate', 'Government Spending', 'Output']

for ax, title, sim_s, sim_b in zip(axes.flatten(), titles, sim_seq[:6], sim_rec[:6]):
ax.plot(sim_s, '-ob', sim_b, '-xk', alpha=0.7)
ax.set(title=title)
ax.grid()

axes.flatten()[0].legend(('Sequential', 'Recursive'))
fig.tight_layout()
plt.show()

As should be expected, the recursive and sequential solutions produce almost identical allocations.
Unlike outcomes with CRRA preferences, the tax rate is not perfectly smoothed.
Instead, the government raises the tax rate when 𝑔𝑡 is high.

100 Chapter 4. Optimal Taxation with State-Contingent Debt

Advanced Dynamic Programming

4.4.6 Further Comments

A related lecture describes an extension of the Lucas-Stokey model by Aiyagari, Marcet, Sargent, and Seppälä (2002)
[AMSSeppala02].
In the AMSS economy, only a risk-free bond is traded.
That lecture compares the recursive representation of the Lucas-Stokey model presented in this lecture with one for an
AMSS economy.
By comparing these recursive formulations, we shall glean a sense in which the dimension of the state is lower in the
Lucas Stokey model.
Accompanying that difference in dimension will be different dynamics of government debt.

4.4. Examples 101

Advanced Dynamic Programming

102 Chapter 4. Optimal Taxation with State-Contingent Debt

CHAPTER

FIVE

OPTIMAL TAXATION WITHOUT STATE-CONTINGENT DEBT

Contents

• Optimal Taxation without State-Contingent Debt

– Overview

– Competitive Equilibrium with Distorting Taxes

– Recursive Version of AMSS Model

– Examples

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon
!pip install interpolation

5.1 Overview

Let’s start with following imports:

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import root
from interpolation.splines import eval_linear, UCGrid, nodes
from quantecon import optimize, MarkovChain
from numba import njit, prange, float64
from numba.experimental import jitclass

In an earlier lecture, we described a model of optimal taxation with state-contingent debt due to Robert E. Lucas, Jr., and
Nancy Stokey [LS83].
Aiyagari, Marcet, Sargent, and Seppälä [AMSSeppala02] (hereafter, AMSS) studied optimal taxation in a model without
state-contingent debt.
In this lecture, we

• describe assumptions and equilibrium concepts
• solve the model
• implement the model numerically

103

Advanced Dynamic Programming

• conduct some policy experiments
• compare outcomes with those in a corresponding complete-markets model

We begin with an introduction to the model.

5.2 Competitive Equilibrium with Distorting Taxes

Many but not all features of the economy are identical to those of the Lucas-Stokey economy.
Let’s start with things that are identical.
For 𝑡 ≥ 0, a history of the state is represented by 𝑠𝑡 = [𝑠𝑡, 𝑠𝑡−1, … , 𝑠0].
Government purchases 𝑔(𝑠) are an exact time-invariant function of 𝑠.
Let 𝑐𝑡(𝑠𝑡), ℓ𝑡(𝑠𝑡), and 𝑛𝑡(𝑠𝑡) denote consumption, leisure, and labor supply, respectively, at history 𝑠𝑡 at time 𝑡.
Each period a representative household is endowed with one unit of time that can be divided between leisure ℓ𝑡 and labor
𝑛𝑡:

𝑛𝑡(𝑠𝑡) + ℓ𝑡(𝑠𝑡) = 1 (5.1)

Output equals 𝑛𝑡(𝑠𝑡) and can be divided between consumption 𝑐𝑡(𝑠𝑡) and 𝑔(𝑠𝑡)

𝑐𝑡(𝑠𝑡) + 𝑔(𝑠𝑡) = 𝑛𝑡(𝑠𝑡) (5.2)

Output is not storable.
The technology pins down a pre-tax wage rate to unity for all 𝑡, 𝑠𝑡.
A representative household’s preferences over {𝑐𝑡(𝑠𝑡), ℓ𝑡(𝑠𝑡)}∞

𝑡=0 are ordered by
∞

∑
𝑡=0

∑
𝑠𝑡

𝛽𝑡𝜋𝑡(𝑠𝑡)𝑢[𝑐𝑡(𝑠𝑡), ℓ𝑡(𝑠𝑡)] (5.3)

where
• 𝜋𝑡(𝑠𝑡) is a joint probability distribution over the sequence 𝑠𝑡, and
• the utility function 𝑢 is increasing, strictly concave, and three times continuously differentiable in both arguments.

The government imposes a flat rate tax 𝜏𝑡(𝑠𝑡) on labor income at time 𝑡, history 𝑠𝑡.
Lucas and Stokey assumed that there are complete markets in one-period Arrow securities; also see smoothing models.
It is at this point that AMSS [AMSSeppala02] modify the Lucas and Stokey economy.
AMSS allow the government to issue only one-period risk-free debt each period.
Ruling out complete markets in this way is a step in the direction of making total tax collections behave more like that
prescribed in Robert Barro (1979) [Bar79] than they do in Lucas and Stokey (1983) [LS83].

104 Chapter 5. Optimal Taxation without State-Contingent Debt

https://dle.quantecon.org/smoothing.html

Advanced Dynamic Programming

5.2.1 Risk-free One-Period Debt Only

In period 𝑡 and history 𝑠𝑡, let
• 𝑏𝑡+1(𝑠𝑡) be the amount of the time 𝑡 + 1 consumption good that at time 𝑡, history 𝑠𝑡 the government promised to
pay

• 𝑅𝑡(𝑠𝑡) be the gross interest rate on risk-free one-period debt between periods 𝑡 and 𝑡 + 1
• 𝑇𝑡(𝑠𝑡) be a non-negative lump-sum transfer to the representative household1

That 𝑏𝑡+1(𝑠𝑡) is the same for all realizations of 𝑠𝑡+1 captures its risk-free character.
The market value at time 𝑡 of government debt maturing at time 𝑡 + 1 equals 𝑏𝑡+1(𝑠𝑡) divided by 𝑅𝑡(𝑠𝑡).
The government’s budget constraint in period 𝑡 at history 𝑠𝑡 is

𝑏𝑡(𝑠𝑡−1) = 𝜏𝑛
𝑡 (𝑠𝑡)𝑛𝑡(𝑠𝑡) − 𝑔(𝑠𝑡) − 𝑇𝑡(𝑠𝑡) + 𝑏𝑡+1(𝑠𝑡)

𝑅𝑡(𝑠𝑡)

≡ 𝑧𝑡(𝑠𝑡) + 𝑏𝑡+1(𝑠𝑡)
𝑅𝑡(𝑠𝑡) ,

(5.4)

where 𝑧𝑡(𝑠𝑡) is the net-of-interest government surplus.
To rule out Ponzi schemes, we assume that the government is subject to a natural debt limit (to be discussed in a
forthcoming lecture).
The consumption Euler equation for a representative household able to trade only one-period risk-free debt with one-
period gross interest rate 𝑅𝑡(𝑠𝑡) is

1
𝑅𝑡(𝑠𝑡) = ∑

𝑠𝑡+1|𝑠𝑡
𝛽𝜋𝑡+1(𝑠𝑡+1|𝑠𝑡)𝑢𝑐(𝑠𝑡+1)

𝑢𝑐(𝑠𝑡)

Substituting this expression into the government’s budget constraint (5.4) yields:

𝑏𝑡(𝑠𝑡−1) = 𝑧𝑡(𝑠𝑡) + 𝛽 ∑
𝑠𝑡+1|𝑠𝑡

𝜋𝑡+1(𝑠𝑡+1|𝑠𝑡)𝑢𝑐(𝑠𝑡+1)
𝑢𝑐(𝑠𝑡) 𝑏𝑡+1(𝑠𝑡) (5.5)

Components of 𝑧𝑡(𝑠𝑡) on the right side depend on 𝑠𝑡, but the left side is required to depend only on 𝑠𝑡−1 .
This is what it means for one-period government debt to be risk-free.
Therefore, the right side of equation (5.5) also has to depend only on 𝑠𝑡−1.
This requirement will give rise to measurability constraints on the Ramsey allocation to be discussed soon.
If we replace 𝑏𝑡+1(𝑠𝑡) on the right side of equation (5.5) by the right side of next period’s budget constraint (associated
with a particular realization 𝑠𝑡) we get

𝑏𝑡(𝑠𝑡−1) = 𝑧𝑡(𝑠𝑡) + ∑
𝑠𝑡+1|𝑠𝑡

𝛽𝜋𝑡+1(𝑠𝑡+1|𝑠𝑡)𝑢𝑐(𝑠𝑡+1)
𝑢𝑐(𝑠𝑡) [𝑧𝑡+1(𝑠𝑡+1) + 𝑏𝑡+2(𝑠𝑡+1)

𝑅𝑡+1(𝑠𝑡+1)]

After making similar repeated substitutions for all future occurrences of government indebtedness, and by invoking a
natural debt limit, we arrive at:

𝑏𝑡(𝑠𝑡−1) =
∞

∑
𝑗=0

∑
𝑠𝑡+𝑗|𝑠𝑡

𝛽𝑗𝜋𝑡+𝑗(𝑠𝑡+𝑗|𝑠𝑡)𝑢𝑐(𝑠𝑡+𝑗)
𝑢𝑐(𝑠𝑡) 𝑧𝑡+𝑗(𝑠𝑡+𝑗) (5.6)

1 In an allocation that solves the Ramsey problem and that levies distorting taxes on labor, why would the government ever want to hand revenues
back to the private sector? It would not in an economy with state-contingent debt, since any such allocation could be improved by lowering distortionary
taxes rather than handing out lump-sum transfers. But, without state-contingent debt there can be circumstances when a government would like to make
lump-sum transfers to the private sector.

5.2. Competitive Equilibrium with Distorting Taxes 105

Advanced Dynamic Programming

Notice how the conditioning sets in equation (5.6) differ: they are 𝑠𝑡−1 on the left side and 𝑠𝑡 on the right side.
Now let’s

• substitute the resource constraint into the net-of-interest government surplus, and
• use the household’s first-order condition 1 − 𝜏𝑛

𝑡 (𝑠𝑡) = 𝑢ℓ(𝑠𝑡)/𝑢𝑐(𝑠𝑡) to eliminate the labor tax rate
so that we can express the net-of-interest government surplus 𝑧𝑡(𝑠𝑡) as

𝑧𝑡(𝑠𝑡) = [1 − 𝑢ℓ(𝑠𝑡)
𝑢𝑐(𝑠𝑡)] [𝑐𝑡(𝑠𝑡) + 𝑔(𝑠𝑡)] − 𝑔(𝑠𝑡) − 𝑇𝑡(𝑠𝑡) . (5.7)

If we substitute appropriate versions of the right side of (5.7) for 𝑧𝑡+𝑗(𝑠𝑡+𝑗) into equation (5.6), we obtain a sequence of
implementability constraints on a Ramsey allocation in an AMSS economy.
Expression (5.6) at time 𝑡 = 0 and initial state 𝑠0 was also an implementability constraint on a Ramsey allocation in a
Lucas-Stokey economy:

𝑏0(𝑠−1) = 𝔼0
∞

∑
𝑗=0

𝛽𝑗 𝑢𝑐(𝑠𝑗)
𝑢𝑐(𝑠0) 𝑧𝑗(𝑠𝑗) (5.8)

Indeed, it was the only implementability constraint there.
But now we also have a large number of additional implementability constraints

𝑏𝑡(𝑠𝑡−1) = 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗 𝑢𝑐(𝑠𝑡+𝑗)
𝑢𝑐(𝑠𝑡) 𝑧𝑡+𝑗(𝑠𝑡+𝑗) (5.9)

Equation (5.9) must hold for each 𝑠𝑡 for each 𝑡 ≥ 1.

5.2.2 Comparison with Lucas-Stokey Economy

The expression on the right side of (5.9) in the Lucas-Stokey (1983) economy would equal the present value of a continu-
ation stream of government net-of-interest surpluses evaluated at what would be competitive equilibrium Arrow-Debreu
prices at date 𝑡.
In the Lucas-Stokey economy, that present value is measurable with respect to 𝑠𝑡.
In the AMSS economy, the restriction that government debt be risk-free imposes that that same present value must be
measurable with respect to 𝑠𝑡−1.
In a language used in the literature on incomplete markets models, it can be said that the AMSS model requires that at
each (𝑡, 𝑠𝑡) what would be the present value of continuation government net-of-interest surpluses in the Lucas-Stokey
model must belong to themarketable subspace of the AMSS model.

5.2.3 Ramsey Problem Without State-contingent Debt

After we have substituted the resource constraint into the utility function, we can express the Ramsey problem as being
to choose an allocation that solves

max
{𝑐𝑡(𝑠𝑡),𝑏𝑡+1(𝑠𝑡)}

𝔼0
∞

∑
𝑡=0

𝛽𝑡𝑢 (𝑐𝑡(𝑠𝑡), 1 − 𝑐𝑡(𝑠𝑡) − 𝑔(𝑠𝑡))

where the maximization is subject to

𝔼0
∞

∑
𝑗=0

𝛽𝑗 𝑢𝑐(𝑠𝑗)
𝑢𝑐(𝑠0) 𝑧𝑗(𝑠𝑗) ≥ 𝑏0(𝑠−1) (5.10)

106 Chapter 5. Optimal Taxation without State-Contingent Debt

Advanced Dynamic Programming

and

𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗 𝑢𝑐(𝑠𝑡+𝑗)
𝑢𝑐(𝑠𝑡) 𝑧𝑡+𝑗(𝑠𝑡+𝑗) = 𝑏𝑡(𝑠𝑡−1) ∀ 𝑡, 𝑠𝑡 (5.11)

given 𝑏0(𝑠−1).

Lagrangian Formulation

Let 𝛾0(𝑠0) be a non-negative Lagrange multiplier on constraint (5.10).
As in the Lucas-Stokey economy, this multiplier is strictly positive when the government must resort to distortionary
taxation; otherwise it equals zero.
A consequence of the assumption that there are no markets in state-contingent securities and that a market exists only in a
risk-free security is that we have to attach a stochastic process {𝛾𝑡(𝑠𝑡)}∞

𝑡=1 of Lagrangemultipliers to the implementability
constraints (5.11).
Depending on how the constraints bind, these multipliers can be positive or negative:

𝛾𝑡(𝑠𝑡) ≥ (≤) 0 if the constraint binds in the following direction

𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗 𝑢𝑐(𝑠𝑡+𝑗)
𝑢𝑐(𝑠𝑡) 𝑧𝑡+𝑗(𝑠𝑡+𝑗) ≥ (≤) 𝑏𝑡(𝑠𝑡−1)

A negative multiplier 𝛾𝑡(𝑠𝑡) < 0 means that if we could relax constraint (5.11), we would like to increase the beginning-
of-period indebtedness for that particular realization of history 𝑠𝑡.
That would let us reduce the beginning-of-period indebtedness for some other history2.
These features flow from the fact that the government cannot use state-contingent debt and therefore cannot allocate its
indebtedness efficiently across future states.

5.2.4 Some Calculations

It is helpful to apply two transformations to the Lagrangian.
Multiply constraint (5.10) by 𝑢𝑐(𝑠0) and the constraints (5.11) by 𝛽𝑡𝑢𝑐(𝑠𝑡).
Then a Lagrangian for the Ramsey problem can be represented as

𝐽 = 𝔼0
∞

∑
𝑡=0

𝛽𝑡{𝑢 (𝑐𝑡(𝑠𝑡), 1 − 𝑐𝑡(𝑠𝑡) − 𝑔(𝑠𝑡))

+ 𝛾𝑡(𝑠𝑡)[𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑢𝑐(𝑠𝑡+𝑗) 𝑧𝑡+𝑗(𝑠𝑡+𝑗) − 𝑢𝑐(𝑠𝑡) 𝑏𝑡(𝑠𝑡−1)}

= 𝔼0
∞

∑
𝑡=0

𝛽𝑡{𝑢 (𝑐𝑡(𝑠𝑡), 1 − 𝑐𝑡(𝑠𝑡) − 𝑔(𝑠𝑡))

+ Ψ𝑡(𝑠𝑡) 𝑢𝑐(𝑠𝑡) 𝑧𝑡(𝑠𝑡) − 𝛾𝑡(𝑠𝑡) 𝑢𝑐(𝑠𝑡) 𝑏𝑡(𝑠𝑡−1)}

(5.12)

where

Ψ𝑡(𝑠𝑡) = Ψ𝑡−1(𝑠𝑡−1) + 𝛾𝑡(𝑠𝑡) and Ψ−1(𝑠−1) = 0 (5.13)
2 From the first-order conditions for the Ramsey problem, there exists another realization ̃𝑠𝑡 with the same history up until the previous period, i.e.,

̃𝑠𝑡−1 = 𝑠𝑡−1, but where the multiplier on constraint (5.11) takes a positive value, so 𝛾𝑡(̃𝑠𝑡) > 0.

5.2. Competitive Equilibrium with Distorting Taxes 107

Advanced Dynamic Programming

In (5.12), the second equality uses the law of iterated expectations and Abel’s summation formula (also called summation
by parts, see this page).
First-order conditions with respect to 𝑐𝑡(𝑠𝑡) can be expressed as

𝑢𝑐(𝑠𝑡) − 𝑢ℓ(𝑠𝑡) + Ψ𝑡(𝑠𝑡) {[𝑢𝑐𝑐(𝑠𝑡) − 𝑢𝑐ℓ(𝑠𝑡)] 𝑧𝑡(𝑠𝑡) + 𝑢𝑐(𝑠𝑡) 𝑧𝑐(𝑠𝑡)}
− 𝛾𝑡(𝑠𝑡) [𝑢𝑐𝑐(𝑠𝑡) − 𝑢𝑐ℓ(𝑠𝑡)] 𝑏𝑡(𝑠𝑡−1) = 0 (5.14)

and with respect to 𝑏𝑡(𝑠𝑡) as

𝔼𝑡 [𝛾𝑡+1(𝑠𝑡+1) 𝑢𝑐(𝑠𝑡+1)] = 0 (5.15)

If we substitute 𝑧𝑡(𝑠𝑡) from (5.7) and its derivative 𝑧𝑐(𝑠𝑡) into the first-order condition (5.14), we find two differences
from the corresponding condition for the optimal allocation in a Lucas-Stokey economy with state-contingent government
debt.

1. The term involving 𝑏𝑡(𝑠𝑡−1) in the first-order condition (5.14) does not appear in the corresponding expression for
the Lucas-Stokey economy.

• This term reflects the constraint that beginning-of-period government indebtedness must be the same across
all realizations of next period’s state, a constraint that would not be present if government debt could be
state-contingent.

2. The Lagrange multiplier Ψ𝑡(𝑠𝑡) in the first-order condition (5.14) may change over time in response to realizations
of the state, while the multiplier Φ in the Lucas-Stokey economy is time-invariant.

We need some code from an earlier lecture on optimal taxation with state-contingent debt sequential allocation imple-
mentation:

class SequentialLS:

'''
Class that takes a preference object, state transition matrix,
and state contingent government expenditure plan as inputs, and
solves the sequential allocation problem described above.
It returns optimal allocations about consumption and labor supply,
as well as the multiplier on the implementability constraint Φ.
'''

def __init__(self,
pref,
π=np.full((2, 2), 0.5),
g=np.array([0.1, 0.2])):

Initialize from pref object attributes
self.β, self.π, self.g = pref.β, π, g
self.mc = MarkovChain(self.π)
self.S = len(π) # Number of states
self.pref = pref

Find the first best allocation
self.find_first_best()

def FOC_first_best(self, c, g):
'''
First order conditions that characterize
the first best allocation.
'''

(continues on next page)

108 Chapter 5. Optimal Taxation without State-Contingent Debt

https://en.wikipedia.org/wiki/Abel%27s_summation_formula

Advanced Dynamic Programming

(continued from previous page)

pref = self.pref
Uc, Ul = pref.Uc, pref.Ul

n = c + g
l = 1 - n

return Uc(c, l) - Ul(c, l)

def find_first_best(self):
'''
Find the first best allocation
'''
S, g = self.S, self.g

res = root(self.FOC_first_best, np.full(S, 0.5), args=(g,))

if (res.fun > 1e-10).any():
raise Exception('Could not find first best')

self.cFB = res.x
self.nFB = self.cFB + g

def FOC_time1(self, c, Φ, g):
'''
First order conditions that characterize
optimal time 1 allocation problems.
'''

pref = self.pref
Uc, Ucc, Ul, Ull, Ulc = pref.Uc, pref.Ucc, pref.Ul, pref.Ull, pref.Ulc

n = c + g
l = 1 - n

LHS = (1 + Φ) * Uc(c, l) + Φ * (c * Ucc(c, l) - n * Ulc(c, l))
RHS = (1 + Φ) * Ul(c, l) + Φ * (c * Ulc(c, l) - n * Ull(c, l))

diff = LHS - RHS

return diff

def time1_allocation(self, Φ):
'''
Computes optimal allocation for time t >= 1 for a given Φ
'''
pref = self.pref
S, g = self.S, self.g

use the first best allocation as intial guess
res = root(self.FOC_time1, self.cFB, args=(Φ, g))

if (res.fun > 1e-10).any():
raise Exception('Could not find LS allocation.')

c = res.x

(continues on next page)

5.2. Competitive Equilibrium with Distorting Taxes 109

Advanced Dynamic Programming

(continued from previous page)

n = c + g
l = 1 - n

Compute x
I = pref.Uc(c, n) * c - pref.Ul(c, l) * n
x = np.linalg.solve(np.eye(S) - self.β * self.π, I)

return c, n, x

def FOC_time0(self, c0, Φ, g0, b0):
'''
First order conditions that characterize
time 0 allocation problem.
'''

pref = self.pref
Ucc, Ulc = pref.Ucc, pref.Ulc

n0 = c0 + g0
l0 = 1 - n0

diff = self.FOC_time1(c0, Φ, g0)
diff -= Φ * (Ucc(c0, l0) - Ulc(c0, l0)) * b0

return diff

def implementability(self, Φ, b0, s0, cn0_arr):
'''
Compute the differences between the RHS and LHS
of the implementability constraint given Φ,
initial debt, and initial state.
'''

pref, π, g, β = self.pref, self.π, self.g, self.β
Uc, Ul = pref.Uc, pref.Ul
g0 = self.g[s0]

c, n, x = self.time1_allocation(Φ)

res = root(self.FOC_time0, cn0_arr[0], args=(Φ, g0, b0))
c0 = res.x
n0 = c0 + g0
l0 = 1 - n0

cn0_arr[:] = c0.item(), n0.item()

LHS = Uc(c0, l0) * b0
RHS = Uc(c0, l0) * c0 - Ul(c0, l0) * n0 + β * π[s0] @ x

return RHS - LHS

def time0_allocation(self, b0, s0):
'''
Finds the optimal time 0 allocation given
initial government debt b0 and state s0
'''

(continues on next page)

110 Chapter 5. Optimal Taxation without State-Contingent Debt

Advanced Dynamic Programming

(continued from previous page)

use the first best allocation as initial guess
cn0_arr = np.array([self.cFB[s0], self.nFB[s0]])

res = root(self.implementability, 0., args=(b0, s0, cn0_arr))

if (res.fun > 1e-10).any():
raise Exception('Could not find time 0 LS allocation.')

Φ = res.x[0]
c0, n0 = cn0_arr

return Φ, c0, n0

def τ(self, c, n):
'''
Computes τ given c, n
'''
pref = self.pref
Uc, Ul = pref.Uc, pref.Ul

return 1 - Ul(c, 1-n) / Uc(c, 1-n)

def simulate(self, b0, s0, T, sHist=None):
'''
Simulates planners policies for T periods
'''
pref, π, β = self.pref, self.π, self.β
Uc = pref.Uc

if sHist is None:
sHist = self.mc.simulate(T, s0)

cHist, nHist, Bhist, τHist, ΦHist = np.empty((5, T))
RHist = np.empty(T-1)

Time 0
Φ, cHist[0], nHist[0] = self.time0_allocation(b0, s0)
τHist[0] = self.τ(cHist[0], nHist[0])
Bhist[0] = b0
ΦHist[0] = Φ

Time 1 onward
for t in range(1, T):

c, n, x = self.time1_allocation(Φ)
τ = self.τ(c, n)
u_c = Uc(c, 1-n)
s = sHist[t]
Eu_c = π[sHist[t-1]] @ u_c
cHist[t], nHist[t], Bhist[t], τHist[t] = c[s], n[s], x[s] / u_c[s], τ[s]
RHist[t-1] = Uc(cHist[t-1], 1-nHist[t-1]) / (β * Eu_c)
ΦHist[t] = Φ

gHist = self.g[sHist]
yHist = nHist

return [cHist, nHist, Bhist, τHist, gHist, yHist, sHist, ΦHist, RHist]

5.2. Competitive Equilibrium with Distorting Taxes 111

Advanced Dynamic Programming

To analyze the AMSS model, we find it useful to adopt a recursive formulation using techniques like those in our lectures
on dynamic Stackelberg models and optimal taxation with state-contingent debt.

5.3 Recursive Version of AMSS Model

We now describe a recursive formulation of the AMSS economy.
We have noted that from the point of view of the Ramsey planner, the restriction to one-period risk-free securities

• leaves intact the single implementability constraint on allocations (5.8) from the Lucas-Stokey economy, but
• adds measurability constraints (5.6) on functions of tails of allocations at each time and history

We now explore how these constraints alter Bellman equations for a time 0 Ramsey planner and for time 𝑡 ≥ 1, history
𝑠𝑡 continuation Ramsey planners.

5.3.1 Recasting State Variables

In the AMSS setting, the government faces a sequence of budget constraints

𝜏𝑡(𝑠𝑡)𝑛𝑡(𝑠𝑡) + 𝑇𝑡(𝑠𝑡) + 𝑏𝑡+1(𝑠𝑡)/𝑅𝑡(𝑠𝑡) = 𝑔𝑡 + 𝑏𝑡(𝑠𝑡−1)

where 𝑅𝑡(𝑠𝑡) is the gross risk-free rate of interest between 𝑡 and 𝑡 + 1 at history 𝑠𝑡 and 𝑇𝑡(𝑠𝑡) are non-negative transfers.
Throughout this lecture, we shall set transfers to zero (for some issues about the limiting behavior of debt, this is possibly
an important difference from AMSS [AMSSeppala02], who restricted transfers to be non-negative).
In this case, the household faces a sequence of budget constraints

𝑏𝑡(𝑠𝑡−1) + (1 − 𝜏𝑡(𝑠𝑡))𝑛𝑡(𝑠𝑡) = 𝑐𝑡(𝑠𝑡) + 𝑏𝑡+1(𝑠𝑡)/𝑅𝑡(𝑠𝑡) (5.16)

The household’s first-order conditions are 𝑢𝑐,𝑡 = 𝛽𝑅𝑡𝔼𝑡𝑢𝑐,𝑡+1 and (1 − 𝜏𝑡)𝑢𝑐,𝑡 = 𝑢𝑙,𝑡.
Using these to eliminate 𝑅𝑡 and 𝜏𝑡 from budget constraint (5.16) gives

𝑏𝑡(𝑠𝑡−1) + 𝑢𝑙,𝑡(𝑠𝑡)
𝑢𝑐,𝑡(𝑠𝑡)𝑛𝑡(𝑠𝑡) = 𝑐𝑡(𝑠𝑡) + 𝛽(𝔼𝑡𝑢𝑐,𝑡+1)𝑏𝑡+1(𝑠𝑡)

𝑢𝑐,𝑡(𝑠𝑡) (5.17)

or

𝑢𝑐,𝑡(𝑠𝑡)𝑏𝑡(𝑠𝑡−1) + 𝑢𝑙,𝑡(𝑠𝑡)𝑛𝑡(𝑠𝑡) = 𝑢𝑐,𝑡(𝑠𝑡)𝑐𝑡(𝑠𝑡) + 𝛽(𝔼𝑡𝑢𝑐,𝑡+1)𝑏𝑡+1(𝑠𝑡) (5.18)

Now define

𝑥𝑡 ≡ 𝛽𝑏𝑡+1(𝑠𝑡)𝔼𝑡𝑢𝑐,𝑡+1 = 𝑢𝑐,𝑡(𝑠𝑡)𝑏𝑡+1(𝑠𝑡)
𝑅𝑡(𝑠𝑡) (5.19)

and represent the household’s budget constraint at time 𝑡, history 𝑠𝑡 as
𝑢𝑐,𝑡𝑥𝑡−1

𝛽𝔼𝑡−1𝑢𝑐,𝑡
= 𝑢𝑐,𝑡𝑐𝑡 − 𝑢𝑙,𝑡𝑛𝑡 + 𝑥𝑡 (5.20)

for 𝑡 ≥ 1.

112 Chapter 5. Optimal Taxation without State-Contingent Debt

Advanced Dynamic Programming

5.3.2 Measurability Constraints

Write equation (5.18) as

𝑏𝑡(𝑠𝑡−1) = 𝑐𝑡(𝑠𝑡) − 𝑢𝑙,𝑡(𝑠𝑡)
𝑢𝑐,𝑡(𝑠𝑡)𝑛𝑡(𝑠𝑡) + 𝛽(𝔼𝑡𝑢𝑐,𝑡+1)𝑏𝑡+1(𝑠𝑡)

𝑢𝑐,𝑡
(5.21)

The right side of equation (5.21) expresses the time 𝑡 value of government debt in terms of a linear combination of terms
whose individual components are measurable with respect to 𝑠𝑡.
The sum of terms on the right side of equation (5.21) must equal 𝑏𝑡(𝑠𝑡−1).
That implies that it has to be measurable with respect to 𝑠𝑡−1.
Equations (5.21) are themeasurability constraints that theAMSSmodel adds to the single time 0 implementation constraint
imposed in the Lucas and Stokey model.

5.3.3 Two Bellman Equations

Let Π(𝑠|𝑠−) be a Markov transition matrix whose entries tell probabilities of moving from state 𝑠− to state 𝑠 in one
period.
Let

• 𝑉 (𝑥−, 𝑠−) be the continuation value of a continuation Ramsey plan at 𝑥𝑡−1 = 𝑥−, 𝑠𝑡−1 = 𝑠− for 𝑡 ≥ 1
• 𝑊(𝑏, 𝑠) be the value of the Ramsey plan at time 0 at 𝑏0 = 𝑏 and 𝑠0 = 𝑠

We distinguish between two types of planners:
For 𝑡 ≥ 1, the value function for a continuation Ramsey planner satisfies the Bellman equation

𝑉 (𝑥−, 𝑠−) = max
{𝑛(𝑠),𝑥(𝑠)}

∑
𝑠

Π(𝑠|𝑠−) [𝑢(𝑛(𝑠) − 𝑔(𝑠), 1 − 𝑛(𝑠)) + 𝛽𝑉 (𝑥(𝑠), 𝑠)] (5.22)

subject to the following collection of implementability constraints, one for each 𝑠 ∈ 𝑆:

𝑢𝑐(𝑠)𝑥−
𝛽 ∑ ̃𝑠 Π(̃𝑠|𝑠−)𝑢𝑐(̃𝑠) = 𝑢𝑐(𝑠)(𝑛(𝑠) − 𝑔(𝑠)) − 𝑢𝑙(𝑠)𝑛(𝑠) + 𝑥(𝑠) (5.23)

A continuation Ramsey planner at 𝑡 ≥ 1 takes (𝑥𝑡−1, 𝑠𝑡−1) = (𝑥−, 𝑠−) as given and before 𝑠 is realized chooses
(𝑛𝑡(𝑠𝑡), 𝑥𝑡(𝑠𝑡)) = (𝑛(𝑠), 𝑥(𝑠)) for 𝑠 ∈ 𝑆.
The Ramsey planner takes (𝑏0, 𝑠0) as given and chooses (𝑛0, 𝑥0).
The value function 𝑊(𝑏0, 𝑠0) for the time 𝑡 = 0 Ramsey planner satisfies the Bellman equation

𝑊(𝑏0, 𝑠0) = max
𝑛0,𝑥0

𝑢(𝑛0 − 𝑔0, 1 − 𝑛0) + 𝛽𝑉 (𝑥0, 𝑠0) (5.24)

where maximization is subject to

𝑢𝑐,0𝑏0 = 𝑢𝑐,0(𝑛0 − 𝑔0) − 𝑢𝑙,0𝑛0 + 𝑥0 (5.25)

5.3. Recursive Version of AMSS Model 113

Advanced Dynamic Programming

5.3.4 Martingale Supercedes State-Variable Degeneracy

Let 𝜇(𝑠|𝑠−)Π(𝑠|𝑠−) be a Lagrange multiplier on the constraint (5.23) for state 𝑠.
After forming an appropriate Lagrangian, we find that the continuation Ramsey planner’s first-order condition with respect
to 𝑥(𝑠) is

𝛽𝑉𝑥(𝑥(𝑠), 𝑠) = 𝜇(𝑠|𝑠−) (5.26)

Applying an envelope theorem to Bellman equation (5.22) gives

𝑉𝑥(𝑥−, 𝑠−) = ∑
𝑠

Π(𝑠|𝑠−)𝜇(𝑠|𝑠−) 𝑢𝑐(𝑠)
𝛽 ∑ ̃𝑠 Π(̃𝑠|𝑠−)𝑢𝑐(̃𝑠) (5.27)

Equations (5.26) and (5.27) imply that

𝑉𝑥(𝑥−, 𝑠−) = ∑
𝑠

(Π(𝑠|𝑠−) 𝑢𝑐(𝑠)
∑ ̃𝑠 Π(̃𝑠|𝑠−)𝑢𝑐(̃𝑠)) 𝑉𝑥(𝑥, 𝑠) (5.28)

Equation (5.28) states that 𝑉𝑥(𝑥, 𝑠) is a risk-adjusted martingale.
Saying that 𝑉𝑥(𝑥, 𝑠) is a risk-adjusted martingale means that 𝑉𝑥(𝑥, 𝑠) is a martingale with respect to the probability
distribution over 𝑠𝑡 sequences that are generated by the twisted transition probability matrix:

Π̌(𝑠|𝑠−) ≡ Π(𝑠|𝑠−) 𝑢𝑐(𝑠)
∑ ̃𝑠 Π(̃𝑠|𝑠−)𝑢𝑐(̃𝑠)

Exercise 5.3.1
Please verify that Π̌(𝑠|𝑠−) is a valid Markov transition density, i.e., that its elements are all non-negative and that for each
𝑠−, the sum over 𝑠 equals unity.

5.3.5 Absence of State Variable Degeneracy

Along a Ramsey plan, the state variable 𝑥𝑡 = 𝑥𝑡(𝑠𝑡, 𝑏0) becomes a function of the history 𝑠𝑡 and initial government debt
𝑏0.
In Lucas-Stokey model, we found that

• a counterpart to 𝑉𝑥(𝑥, 𝑠) is time-invariant and equal to the Lagrange multiplier on the Lucas-Stokey implementabil-
ity constraint

• time invariance of 𝑉𝑥(𝑥, 𝑠) is the source of a key feature of the Lucas-Stokey model, namely, state variable
degeneracy in which 𝑥𝑡 is an exact time-invariant function of 𝑠𝑡.

That 𝑉𝑥(𝑥, 𝑠) varies over time according to a twisted martingale means that there is no state-variable degeneracy in the
AMSS model.
In the AMSS model, both 𝑥 and 𝑠 are needed to describe the state.
This property of the AMSS model transmits a twisted martingale component to consumption, employment, and the tax
rate.

114 Chapter 5. Optimal Taxation without State-Contingent Debt

Advanced Dynamic Programming

5.3.6 Digression on Non-negative Transfers

Throughout this lecture, we have imposed that transfers 𝑇𝑡 = 0.
AMSS [AMSSeppala02] instead imposed a nonnegativity constraint 𝑇𝑡 ≥ 0 on transfers.
They also considered a special case of quasi-linear preferences, 𝑢(𝑐, 𝑙) = 𝑐 + 𝐻(𝑙).
In this case, 𝑉𝑥(𝑥, 𝑠) ≤ 0 is a non-positive martingale.
By the martingale convergence theorem 𝑉𝑥(𝑥, 𝑠) converges almost surely.
Furthermore, when the Markov chain Π(𝑠|𝑠−) and the government expenditure function 𝑔(𝑠) are such that 𝑔𝑡 is perpet-
ually random, 𝑉𝑥(𝑥, 𝑠) almost surely converges to zero.
For quasi-linear preferences, the first-order condition formaximizing (5.22) subject to (5.23) with respect to𝑛(𝑠) becomes

(1 − 𝜇(𝑠|𝑠−))(1 − 𝑢𝑙(𝑠)) + 𝜇(𝑠|𝑠−)𝑛(𝑠)𝑢𝑙𝑙(𝑠) = 0

When 𝜇(𝑠|𝑠−) = 𝛽𝑉𝑥(𝑥(𝑠), 𝑥) converges to zero, in the limit 𝑢𝑙(𝑠) = 1 = 𝑢𝑐(𝑠), so that 𝜏(𝑥(𝑠), 𝑠) = 0.
Thus, in the limit, if 𝑔𝑡 is perpetually random, the government accumulates sufficient assets to finance all expenditures
from earnings on those assets, returning any excess revenues to the household as non-negative lump-sum transfers.

5.3.7 Code

The recursive formulation is implemented as follows

class AMSS:
WARNING: THE CODE IS EXTREMELY SENSITIVE TO CHOCIES OF PARAMETERS.
DO NOT CHANGE THE PARAMETERS AND EXPECT IT TO WORK

def __init__(self, pref, β, Π, g, x_grid, bounds_v):
self.β, self.Π, self.g = β, Π, g
self.x_grid = x_grid
self.n = x_grid[0][2]
self.S = len(Π)
self.bounds = bounds_v
self.pref = pref

self.T_v, self.T_w = bellman_operator_factory(Π, β, x_grid, g,
bounds_v)

self.V_solved = False
self.W_solved = False

def compute_V(self, V, σ_v_star, tol_vfi, maxitr, print_itr):

T_v = self.T_v

self.success = False

V_new = np.zeros_like(V)

Δ = 1.0
for itr in range(maxitr):

T_v(V, V_new, σ_v_star, self.pref)

(continues on next page)

5.3. Recursive Version of AMSS Model 115

Advanced Dynamic Programming

(continued from previous page)

Δ = np.max(np.abs(V_new - V))

if Δ < tol_vfi:
self.V_solved = True
print('Successfully completed VFI after %i iterations'

% (itr+1))
break

if (itr + 1) % print_itr == 0:
print('Error at iteration %i : ' % (itr + 1), Δ)

V[:] = V_new[:]

self.V = V
self.σ_v_star = σ_v_star

return V, σ_v_star

def compute_W(self, b_0, W, σ_w_star):
T_w = self.T_w
V = self.V

T_w(W, σ_w_star, V, b_0, self.pref)

self.W = W
self.σ_w_star = σ_w_star
self.W_solved = True
print('Succesfully solved the time 0 problem.')

return W, σ_w_star

def solve(self, V, σ_v_star, b_0, W, σ_w_star, tol_vfi=1e-7,
maxitr=1000, print_itr=10):

print("===============")
print("Solve time 1 problem")
print("===============")
self.compute_V(V, σ_v_star, tol_vfi, maxitr, print_itr)
print("===============")
print("Solve time 0 problem")
print("===============")
self.compute_W(b_0, W, σ_w_star)

def simulate(self, s_hist, b_0):
if not (self.V_solved and self.W_solved):

msg = "V and W need to be successfully computed before simulation."
raise ValueError(msg)

pref = self.pref
x_grid, g, β, S = self.x_grid, self.g, self.β, self.S
σ_v_star, σ_w_star = self.σ_v_star, self.σ_w_star

T = len(s_hist)
s_0 = s_hist[0]

Pre-allocate
n_hist = np.zeros(T)

(continues on next page)

116 Chapter 5. Optimal Taxation without State-Contingent Debt

Advanced Dynamic Programming

(continued from previous page)

x_hist = np.zeros(T)
c_hist = np.zeros(T)
τ_hist = np.zeros(T)
b_hist = np.zeros(T)
g_hist = np.zeros(T)

Compute t = 0
l_0, T_0 = σ_w_star[s_0]
c_0 = (1 - l_0) - g[s_0]
x_0 = (-pref.Uc(c_0, l_0) * (c_0 - T_0 - b_0) +

pref.Ul(c_0, l_0) * (1 - l_0))

n_hist[0] = (1 - l_0)
x_hist[0] = x_0
c_hist[0] = c_0
τ_hist[0] = 1 - pref.Ul(c_0, l_0) / pref.Uc(c_0, l_0)
b_hist[0] = b_0
g_hist[0] = g[s_0]

Compute t > 0
for t in range(T - 1):

x_ = x_hist[t]
s_ = s_hist[t]
l = np.zeros(S)
T = np.zeros(S)
for s in range(S):

x_arr = np.array([x_])
l[s] = eval_linear(x_grid, σ_v_star[s_, :, s], x_arr)
T[s] = eval_linear(x_grid, σ_v_star[s_, :, S+s], x_arr)

c = (1 - l) - g
u_c = pref.Uc(c, l)
Eu_c = Π[s_] @ u_c

x = u_c * x_ / (β * Eu_c) - u_c * (c - T) + pref.Ul(c, l) * (1 - l)

c_next = c[s_hist[t+1]]
l_next = l[s_hist[t+1]]

x_hist[t+1] = x[s_hist[t+1]]
n_hist[t+1] = 1 - l_next
c_hist[t+1] = c_next
τ_hist[t+1] = 1 - pref.Ul(c_next, l_next) / pref.Uc(c_next, l_next)
b_hist[t+1] = x_ / (β * Eu_c)
g_hist[t+1] = g[s_hist[t+1]]

return c_hist, n_hist, b_hist, τ_hist, g_hist, n_hist

def obj_factory(Π, β, x_grid, g):
S = len(Π)

@njit
def obj_V(σ, state, V, pref):

Unpack state
s_, x_ = state

(continues on next page)

5.3. Recursive Version of AMSS Model 117

Advanced Dynamic Programming

(continued from previous page)

l = σ[:S]
T = σ[S:]

c = (1 - l) - g
u_c = pref.Uc(c, l)
Eu_c = Π[s_] @ u_c
x = u_c * x_ / (β * Eu_c) - u_c * (c - T) + pref.Ul(c, l) * (1 - l)

V_next = np.zeros(S)

for s in range(S):
V_next[s] = eval_linear(x_grid, V[s], np.array([x[s]]))

out = Π[s_] @ (pref.U(c, l) + β * V_next)

return out

@njit
def obj_W(σ, state, V, pref):

Unpack state
s_, b_0 = state
l, T = σ

c = (1 - l) - g[s_]
x = -pref.Uc(c, l) * (c - T - b_0) + pref.Ul(c, l) * (1 - l)

V_next = eval_linear(x_grid, V[s_], np.array([x]))

out = pref.U(c, l) + β * V_next

return out

return obj_V, obj_W

def bellman_operator_factory(Π, β, x_grid, g, bounds_v):
obj_V, obj_W = obj_factory(Π, β, x_grid, g)
n = x_grid[0][2]
S = len(Π)
x_nodes = nodes(x_grid)

@njit(parallel=True)
def T_v(V, V_new, σ_star, pref):

for s_ in prange(S):
for x_i in prange(n):

state = (s_, x_nodes[x_i])
x0 = σ_star[s_, x_i]
res = optimize.nelder_mead(obj_V, x0, bounds=bounds_v,

args=(state, V, pref))

if res.success:
V_new[s_, x_i] = res.fun
σ_star[s_, x_i] = res.x

else:
print("Optimization routine failed.")

(continues on next page)

118 Chapter 5. Optimal Taxation without State-Contingent Debt

Advanced Dynamic Programming

(continued from previous page)

bounds_w = np.array([[-9.0, 1.0], [0., 10.]])

def T_w(W, σ_star, V, b_0, pref):
for s_ in prange(S):

state = (s_, b_0)
x0 = σ_star[s_]
res = optimize.nelder_mead(obj_W, x0, bounds=bounds_w,

args=(state, V, pref))

W[s_] = res.fun
σ_star[s_] = res.x

return T_v, T_w

5.4 Examples

We now turn to some examples.

5.4.1 Anticipated One-Period War

In our lecture on optimal taxation with state-contingent debt we studied how the government manages uncertainty in a
simple setting.
As in that lecture, we assume the one-period utility function

𝑢(𝑐, 𝑛) = 𝑐1−𝜎

1 − 𝜎 − 𝑛1+𝛾

1 + 𝛾

Note: For convenience in matching our computer code, we have expressed utility as a function of 𝑛 rather than leisure 𝑙.

We first consider a government expenditure process that we studied earlier in a lecture on optimal taxation with state-
contingent debt.
Government expenditures are known for sure in all periods except one.

• For 𝑡 < 3 or 𝑡 > 3 we assume that 𝑔𝑡 = 𝑔𝑙 = 0.1.
• At 𝑡 = 3 a war occurs with probability 0.5.

– If there is war, 𝑔3 = 𝑔ℎ = 0.2.
– If there is no war 𝑔3 = 𝑔𝑙 = 0.1.

A useful trick is to define components of the state vector as the following six (𝑡, 𝑔) pairs:

(0, 𝑔𝑙), (1, 𝑔𝑙), (2, 𝑔𝑙), (3, 𝑔𝑙), (3, 𝑔ℎ), (𝑡 ≥ 4, 𝑔𝑙)

We think of these 6 states as corresponding to 𝑠 = 1, 2, 3, 4, 5, 6.

5.4. Examples 119

Advanced Dynamic Programming

The transition matrix is

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0.5 0.5 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The government expenditure at each state is

𝑔 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.1
0.1
0.1
0.1
0.2
0.1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We assume the same utility parameters as in the Lucas-Stokey economy.
This utility function is implemented in the following class.

crra_util_data = [
('β', float64),
('σ', float64),
('γ', float64)

]

@jitclass(crra_util_data)
class CRRAutility:

def __init__(self,
β=0.9,
σ=2,
γ=2):

self.β, self.σ, self.γ = β, σ, γ

Utility function
def U(self, c, l):

Note: `l` should not be interpreted as labor, it is an auxiliary
variable used to conveniently match the code and the equations
in the lecture
σ = self.σ
if σ == 1.:

U = np.log(c)
else:

U = (c**(1 - σ) - 1) / (1 - σ)
return U - (1-l) ** (1 + self.γ) / (1 + self.γ)

Derivatives of utility function
def Uc(self, c, l):

return c ** (-self.σ)

def Ucc(self, c, l):
return -self.σ * c ** (-self.σ - 1)

def Ul(self, c, l):

(continues on next page)

120 Chapter 5. Optimal Taxation without State-Contingent Debt

Advanced Dynamic Programming

(continued from previous page)

return (1-l) ** self.γ

def Ull(self, c, l):
return -self.γ * (1-l) ** (self.γ - 1)

def Ucl(self, c, l):
return 0

def Ulc(self, c, l):
return 0

The following figure plots Ramsey plans under complete and incomplete markets for both possible realizations of the state
at time 𝑡 = 3.
Ramsey outcomes and policies when the government has access to state-contingent debt are represented by black lines
and by red lines when there is only a risk-free bond.
Paths with circles are histories in which there is peace, while those with triangle denote war.

WARNING: DO NOT EXPECT THE CODE TO WORK IF YOU CHANGE PARAMETERS
σ = 2
γ = 2
β = 0.9
Π = np.array([[0, 1, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0],
[0, 0, 0, 0.5, 0.5, 0],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1]])

g = np.array([0.1, 0.1, 0.1, 0.2, 0.1, 0.1])

x_min = -1.5555
x_max = 17.339
x_num = 300

x_grid = UCGrid((x_min, x_max, x_num))

crra_pref = CRRAutility(β=β, σ=σ, γ=γ)

S = len(Π)
bounds_v = np.vstack([np.hstack([np.full(S, -10.), np.zeros(S)]),

np.hstack([np.ones(S) - g, np.full(S, 10.)])]).T

amss_model = AMSS(crra_pref, β, Π, g, x_grid, bounds_v)

WARNING: DO NOT EXPECT THE CODE TO WORK IF YOU CHANGE PARAMETERS
V = np.zeros((len(Π), x_num))
V[:] = -nodes(x_grid).T ** 2

σ_v_star = np.ones((S, x_num, S * 2))
σ_v_star[:, :, :S] = 0.0

W = np.empty(len(Π))
b_0 = 1.0
σ_w_star = np.ones((S, 2))
σ_w_star[:, 0] = -0.05

5.4. Examples 121

Advanced Dynamic Programming

%%time

amss_model.solve(V, σ_v_star, b_0, W, σ_w_star)

===============
Solve time 1 problem
===============

Error at iteration 10 : 1.110064840137854

Error at iteration 20 : 0.30784885876438395

Error at iteration 30 : 0.03221851531398379

Error at iteration 40 : 0.014347598008733087

Error at iteration 50 : 0.0031219444631354065

Error at iteration 60 : 0.0010783647355108172

Error at iteration 70 : 0.0003761255356202753

Error at iteration 80 : 0.0001318127597098595

Error at iteration 90 : 4.650031579878089e-05

Error at iteration 100 : 1.801377708510188e-05

Error at iteration 110 : 6.175872600877597e-06

Error at iteration 120 : 2.4450291853383987e-06

Error at iteration 130 : 1.0836745989450947e-06

Error at iteration 140 : 5.682877084467464e-07

Error at iteration 150 : 3.567560966644123e-07

Error at iteration 160 : 2.5837734796141376e-07

Error at iteration 170 : 2.047536575844333e-07

122 Chapter 5. Optimal Taxation without State-Contingent Debt

Advanced Dynamic Programming

Error at iteration 180 : 1.7066849622437985e-07

Error at iteration 190 : 1.4622035848788073e-07

Error at iteration 200 : 1.27387780324284e-07

Error at iteration 210 : 1.1226231499961159e-07

Successfully completed VFI after 220 iterations
===============
Solve time 0 problem
===============

Succesfully solved the time 0 problem.
CPU times: user 2min 5s, sys: 1.82 s, total: 2min 7s
Wall time: 1min 26s

Solve the LS model
ls_model = SequentialLS(crra_pref, g=g, π=Π)

WARNING: DO NOT EXPECT THE CODE TO WORK IF YOU CHANGE PARAMETERS
s_hist_h = np.array([0, 1, 2, 3, 5, 5, 5])
s_hist_l = np.array([0, 1, 2, 4, 5, 5, 5])

sim_h_amss = amss_model.simulate(s_hist_h, b_0)
sim_l_amss = amss_model.simulate(s_hist_l, b_0)

sim_h_ls = ls_model.simulate(b_0, 0, 7, s_hist_h)
sim_l_ls = ls_model.simulate(b_0, 0, 7, s_hist_l)

fig, axes = plt.subplots(3, 2, figsize=(14, 10))
titles = ['Consumption', 'Labor Supply', 'Government Debt',

'Tax Rate', 'Government Spending', 'Output']

for ax, title, ls_l, ls_h, amss_l, amss_h in zip(axes.flatten(), titles,
sim_l_ls, sim_h_ls,
sim_l_amss, sim_h_amss):

ax.plot(ls_l, '-ok', ls_h, '-^k', amss_l, '-or', amss_h, '-^r',
alpha=0.7)

ax.set(title=title)
ax.grid()

plt.tight_layout()
plt.show()

5.4. Examples 123

Advanced Dynamic Programming

How a Ramsey planner responds to war depends on the structure of the asset market.
If it is able to trade state-contingent debt, then at time 𝑡 = 2

• the government purchases an Arrow security that pays off when 𝑔3 = 𝑔ℎ

• the government sells an Arrow security that pays off when 𝑔3 = 𝑔𝑙

• the Ramsey planner designs these purchases and sales designed so that, regardless of whether or not there is a war
at 𝑡 = 3, the government begins period 𝑡 = 4 with the same government debt

This pattern facilities smoothing tax rates across states.
The government without state-contingent debt cannot do this.
Instead, it must enter time 𝑡 = 3 with the same level of debt falling due whether there is peace or war at 𝑡 = 3.
The risk-free rate between time 2 and time 3 is unusually low because at time 2 consumption at time 3 is expected to be
unusually low.
A low risk-free rate of return on government debt between time 2 and time 3 allows the government to enter period 3
with lower government debt than it entered period 2.
To finance a war at time 3 it raises taxes and issues more debt to carry into perpetual peace that begins in period 4.
To service the additional debt burden, it raises taxes in all future periods.
The absence of state-contingent debt leads to an important difference in the optimal tax policy.
When the Ramsey planner has access to state-contingent debt, the optimal tax policy is history independent

• the tax rate is a function of the current level of government spending only, given the Lagrange multiplier on the
implementability constraint

124 Chapter 5. Optimal Taxation without State-Contingent Debt

Advanced Dynamic Programming

Without state-contingent debt, the optimal tax rate is history dependent.
• A war at time 𝑡 = 3 causes a permanent increase in the tax rate.
• Peace at time 𝑡 = 3 causes a permanent reduction in the tax rate.

Perpetual War Alert

History dependence occurs more dramatically in a case in which the government perpetually faces the prospect of war.
This case was studied in the final example of the lecture on optimal taxation with state-contingent debt.
There, each period the government faces a constant probability, 0.5, of war.
In addition, this example features the following preferences

𝑢(𝑐, 𝑛) = log(𝑐) + 0.69 log(1 − 𝑛)

In accordance, we will re-define our utility function.

log_util_data = [
('β', float64),
('ψ', float64)

]

@jitclass(log_util_data)
class LogUtility:

def __init__(self,
β=0.9,
ψ=0.69):

self.β, self.ψ = β, ψ

Utility function
def U(self, c, l):

return np.log(c) + self.ψ * np.log(l)

Derivatives of utility function
def Uc(self, c, l):

return 1 / c

def Ucc(self, c, l):
return -c**(-2)

def Ul(self, c, l):
return self.ψ / l

def Ull(self, c, l):
return -self.ψ / l**2

def Ucl(self, c, l):
return 0

def Ulc(self, c, l):
return 0

With these preferences, Ramsey tax rates will vary even in the Lucas-Stokey model with state-contingent debt.

5.4. Examples 125

Advanced Dynamic Programming

The figure below plots optimal tax policies for both the economy with state-contingent debt (circles) and the economy
with only a risk-free bond (triangles).

WARNING: DO NOT EXPECT THE CODE TO WORK IF YOU CHANGE PARAMETERS
ψ = 0.69
Π = np.full((2, 2), 0.5)
β = 0.9
g = np.array([0.1, 0.2])

x_min = -3.4107
x_max = 3.709
x_num = 300

x_grid = UCGrid((x_min, x_max, x_num))
log_pref = LogUtility(β=β, ψ=ψ)

S = len(Π)
bounds_v = np.vstack([np.zeros(2 * S), np.hstack([1 - g, np.ones(S)])]).T

V = np.zeros((len(Π), x_num))
V[:] = -(nodes(x_grid).T + x_max) ** 2 / 14

σ_v_star = 1 - np.full((S, x_num, S * 2), 0.55)

W = np.empty(len(Π))
b_0 = 0.5
σ_w_star = 1 - np.full((S, 2), 0.55)

amss_model = AMSS(log_pref, β, Π, g, x_grid, bounds_v)

%%time

amss_model.solve(V, σ_v_star, b_0, W, σ_w_star, tol_vfi=3e-5, maxitr=3000,
print_itr=100)

===============
Solve time 1 problem
===============

Error at iteration 100 : 0.0011569123052908026

Error at iteration 200 : 0.0005024948171925558

Error at iteration 300 : 0.0002995649778405607

Error at iteration 400 : 0.00020753209923363158

Error at iteration 500 : 0.00015556566848218267

Error at iteration 600 : 0.0001228034492957164

126 Chapter 5. Optimal Taxation without State-Contingent Debt

Advanced Dynamic Programming

Error at iteration 700 : 0.00010068689697462219

Error at iteration 800 : 8.474340939912395e-05

Error at iteration 900 : 7.290920770763876e-05

Error at iteration 1000 : 6.375694017535238e-05

Error at iteration 1100 : 5.642689428775327e-05

Error at iteration 1200 : 5.045426282634935e-05

Error at iteration 1300 : 4.561168914030134e-05

Error at iteration 1400 : 4.150059282892471e-05

Error at iteration 1500 : 3.799110186264443e-05

Error at iteration 1600 : 3.5163266918658564e-05

Error at iteration 1700 : 3.263979350620616e-05

Error at iteration 1800 : 3.0359381506528393e-05

Successfully completed VFI after 1818 iterations
===============
Solve time 0 problem
===============

Succesfully solved the time 0 problem.
CPU times: user 1min 58s, sys: 1.05 s, total: 1min 59s
Wall time: 1min 28s

ls_model = SequentialLS(log_pref, g=g, π=Π) # Solve sequential problem

WARNING: DO NOT EXPECT THE CODE TO WORK IF YOU CHANGE PARAMETERS
s_hist = np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1,

0, 0, 0, 1, 1, 1, 1, 1, 1, 0])

T = len(s_hist)

sim_amss = amss_model.simulate(s_hist, b_0)
sim_ls = ls_model.simulate(0.5, 0, T, s_hist)

titles = ['Consumption', 'Labor Supply', 'Government Debt',

(continues on next page)

5.4. Examples 127

Advanced Dynamic Programming

(continued from previous page)

'Tax Rate', 'Government Spending', 'Output']

fig, axes = plt.subplots(3, 2, figsize=(14, 10))

for ax, title, ls, amss in zip(axes.flatten(), titles, sim_ls, sim_amss):
ax.plot(ls, '-ok', amss, '-^b')
ax.set(title=title)
ax.grid()

axes[0, 0].legend(('Complete Markets', 'Incomplete Markets'))
plt.tight_layout()
plt.show()

When the government experiences a prolonged period of peace, it is able to reduce government debt and set persistently
lower tax rates.
However, the government finances a long war by borrowing and raising taxes.
This results in a drift away from policies with state-contingent debt that depends on the history of shocks.
This is even more evident in the following figure that plots the evolution of the two policies over 200 periods.
This outcome reflects the presence of a force for precautionary saving that the incomplete markets structure imparts to
the Ramsey plan.
In this subsequent lecture and this subsequent lecture, some ultimate consequences of that force are explored.

128 Chapter 5. Optimal Taxation without State-Contingent Debt

Advanced Dynamic Programming

T = 200
s_0 = 0
mc = MarkovChain(Π)

s_hist_long = mc.simulate(T, init=s_0, random_state=5)

sim_amss = amss_model.simulate(s_hist_long, b_0)
sim_ls = ls_model.simulate(0.5, 0, T, s_hist_long)

titles = ['Consumption', 'Labor Supply', 'Government Debt',
'Tax Rate', 'Government Spending', 'Output']

fig, axes = plt.subplots(3, 2, figsize=(14, 10))

for ax, title, ls, amss in zip(axes.flatten(), titles, sim_ls, \
sim_amss):

ax.plot(ls, '-k', amss, '-.b', alpha=0.5)
ax.set(title=title)
ax.grid()

axes[0, 0].legend(('Complete Markets','Incomplete Markets'))
plt.tight_layout()
plt.show()

5.4. Examples 129

Advanced Dynamic Programming

130 Chapter 5. Optimal Taxation without State-Contingent Debt

CHAPTER

SIX

FLUCTUATING INTEREST RATES DELIVER FISCAL INSURANCE

Contents

• Fluctuating Interest Rates Deliver Fiscal Insurance

– Overview

– Forces at Work

– Logical Flow of Lecture

– Example Economy

– Reverse Engineering Strategy

– Code for Reverse Engineering

– Short Simulation for Reverse-engineered: Initial Debt

– Long Simulation

– BEGS Approximations of Limiting Debt and Convergence Rate

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

6.1 Overview

This lecture extends our investigations of how optimal policies for levying a flat-rate tax on labor income and issuing
government debt depend on whether there are complete markets for debt.
A Ramsey allocation and Ramsey policy in the AMSS [AMSSeppala02] model described in optimal taxation without
state-contingent debt generally differs from a Ramsey allocation and Ramsey policy in the Lucas-Stokey [LS83] model
described in optimal taxation with state-contingent debt.
This is because the implementability restriction that a competitive equilibrium with a distorting tax imposes on allocations
in the Lucas-Stokey model is just one among a set of implementability conditions imposed in the AMSS model.
These additional constraints require that time 𝑡 components of a Ramsey allocation for the AMSS model bemeasurable
with respect to time 𝑡 − 1 information.
Themeasurability constraints imposed by theAMSSmodel are inherited from the restriction that only one-period risk-free
bonds can be traded.

131

Advanced Dynamic Programming

Differences between the Ramsey allocations in the two models indicate that at least some of the implementability con-
straints of the AMSS model of optimal taxation without state-contingent debt are violated at the Ramsey allocation of a
corresponding [LS83] model with state-contingent debt.
Another way to say this is that differences between the Ramsey allocations of the two models indicate that some of the
measurability constraints imposed by the AMSS model are violated at the Ramsey allocation of the Lucas-Stokey
model.
Nonzero Lagrange multipliers on those constraints make the Ramsey allocation for the AMSS model differ from the
Ramsey allocation for the Lucas-Stokey model.
This lecture studies a special AMSS model in which

• The exogenous state variable 𝑠𝑡 is governed by a finite-state Markov chain.
• With an arbitrary budget-feasible initial level of government debt, the measurability constraints

– bind for many periods, but ….
– eventually, they stop binding evermore, so that …
– in the tail of the Ramsey plan, the Lagrange multipliers 𝛾𝑡(𝑠𝑡) on the AMSS implementability constraints
(5.8) are zero.

• After the implementability constraints (5.8) no longer bind in the tail of the AMSS Ramsey plan
– history dependence of the AMSS state variable 𝑥𝑡 vanishes and 𝑥𝑡 becomes a time-invariant function of the
Markov state 𝑠𝑡.

– the par value of government debt becomes constant over time so that 𝑏𝑡+1(𝑠𝑡) = �̄� for 𝑡 ≥ 𝑇 for a sufficiently
large 𝑇 .

– �̄� < 0, so that the tail of the Ramsey plan instructs the government always to make a constant par value of
risk-free one-period loans to the private sector.

– the one-period gross interest rate𝑅𝑡(𝑠𝑡) on risk-free debt converges to a time-invariant function of theMarkov
state 𝑠𝑡.

• For a particular 𝑏0 < 0 (i.e., a positive level of initial government loans to the private sector), the measurability
constraints never bind.

• In this special case
– the par value 𝑏𝑡+1(𝑠𝑡) = �̄� of government debt at time 𝑡 and Markov state 𝑠𝑡 is constant across time and
states, but ….

– themarket value �̄�
𝑅𝑡(𝑠𝑡) of government debt at time 𝑡 varies as a time-invariant function of the Markov state

𝑠𝑡.

– fluctuations in the interest rate make gross earnings on government debt �̄�
𝑅𝑡(𝑠𝑡) fully insure the gross-of-gross-

interest-payments government budget against fluctuations in government expenditures.
– the state variable 𝑥 in a recursive representation of a Ramsey plan is a time-invariant function of the Markov
state for 𝑡 ≥ 0.

• In this special case, the Ramsey allocation in the AMSS model agrees with that in a Lucas-Stokey [LS83] complete
markets model in which the same amount of state-contingent debt falls due in all states tomorrow

– it is a situation in which the Ramsey planner loses nothing from not being able to trade state-contingent debt
and being restricted to exchange only risk-free debt debt.

• This outcome emerges only when we initialize government debt at a particular 𝑏0 < 0.

132 Chapter 6. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Dynamic Programming

In a nutshell, the reason for this striking outcome is that at a particular level of risk-free government assets, fluctuations
in the one-period risk-free interest rate provide the government with complete insurance against stochastically varying
government expenditures.
Let’s start with some imports:

import matplotlib.pyplot as plt
%matplotlib inline
from scipy.optimize import fsolve, fmin

6.2 Forces at Work

The forces driving asymptotic outcomes here are examples of dynamics present in a more general class of incomplete
markets models analyzed in [BEGS17] (BEGS).
BEGS provide conditions under which government debt under a Ramsey plan converges to an invariant distribution.
BEGS construct approximations to that asymptotically invariant distribution of government debt under a Ramsey plan.
BEGS also compute an approximation to a Ramsey plan’s rate of convergence to that limiting invariant distribution.
We shall use the BEGS approximating limiting distribution and their approximating rate of convergence to help interpret
outcomes here.
For a long time, the Ramsey plan puts a nontrivial martingale-like component into the par value of government debt as
part of the way that the Ramsey plan imperfectly smooths distortions from the labor tax rate across time and Markov
states.
But BEGS show that binding implementability constraints slowly push government debt in a direction designed to let the
government use fluctuations in equilibrium interest rates rather than fluctuations in par values of debt to insure against
shocks to government expenditures.

• This is a weak (but unrelenting) force that, starting from a positive initial debt level, for a long time is dominated
by the stochastic martingale-like component of debt dynamics that the Ramsey planner uses to facilitate imperfect
tax-smoothing across time and states.

• This weak force slowly drives the par value of government assets to a constant level at which the government can
completely insure against government expenditure shocks while shutting down the stochastic component of debt
dynamics.

• At that point, the tail of the par value of government debt becomes a trivial martingale: it is constant over time.

6.3 Logical Flow of Lecture

We present ideas in the following order
• We describe a two-state AMSS economy and generate a long simulation starting from a positive initial government
debt.

• We observe that in a long simulation starting from positive government debt, the par value of government debt
eventually converges to a constant �̄�.

• In fact, the par value of government debt converges to the same constant level �̄� for alternative realizations of the
Markov government expenditure process and for alternative settings of initial government debt 𝑏0.

• We reverse engineer a particular value of initial government debt 𝑏0 (it turns out to be negative) for which the
continuation debt moves to �̄� immediately.

6.2. Forces at Work 133

Advanced Dynamic Programming

• We note that for this particular initial debt 𝑏0, the Ramsey allocations for the AMSS economy and the Lucas-Stokey
model are identical

– we verify that the LS Ramsey planner chooses to purchase identical claims to time 𝑡 + 1 consumption for all
Markov states tomorrow for each Markov state today.

• We compute the BEGS approximations to check how accurately they describe the dynamics of the long-simulation.

6.3.1 Equations from Lucas-Stokey (1983) Model

Although we are studying an AMSS [AMSSeppala02] economy, a Lucas-Stokey [LS83] economy plays an important role
in the reverse-engineering calculation to be described below.
For that reason, it is helpful to have key equations underlying a Ramsey plan for the Lucas-Stokey economy readily
available.
Recall first-order conditions for a Ramsey allocation for the Lucas-Stokey economy.
For 𝑡 ≥ 1, these take the form

(1 + Φ)𝑢𝑐(𝑐, 1 − 𝑐 − 𝑔) + Φ[𝑐𝑢𝑐𝑐(𝑐, 1 − 𝑐 − 𝑔) − (𝑐 + 𝑔)𝑢ℓ𝑐(𝑐, 1 − 𝑐 − 𝑔)]
= (1 + Φ)𝑢ℓ(𝑐, 1 − 𝑐 − 𝑔) + Φ[𝑐𝑢𝑐ℓ(𝑐, 1 − 𝑐 − 𝑔) − (𝑐 + 𝑔)𝑢ℓℓ(𝑐, 1 − 𝑐 − 𝑔)] (6.1)

There is one such equation for each value of the Markov state 𝑠𝑡.
Given an initial Markov state, the time 𝑡 = 0 quantities 𝑐0 and 𝑏0 satisfy

(1 + Φ)𝑢𝑐(𝑐, 1 − 𝑐 − 𝑔) + Φ[𝑐𝑢𝑐𝑐(𝑐, 1 − 𝑐 − 𝑔) − (𝑐 + 𝑔)𝑢ℓ𝑐(𝑐, 1 − 𝑐 − 𝑔)]
= (1 + Φ)𝑢ℓ(𝑐, 1 − 𝑐 − 𝑔) + Φ[𝑐𝑢𝑐ℓ(𝑐, 1 − 𝑐 − 𝑔) − (𝑐 + 𝑔)𝑢ℓℓ(𝑐, 1 − 𝑐 − 𝑔)] + Φ(𝑢𝑐𝑐 − 𝑢𝑐,ℓ)𝑏0

(6.2)

In addition, the time 𝑡 = 0 budget constraint is satisfied at 𝑐0 and initial government debt 𝑏0

𝑏0 + 𝑔0 = 𝜏0(𝑐0 + 𝑔0) + �̄�
𝑅0

(6.3)

where 𝑅0 is the gross interest rate for the Markov state 𝑠0 that is assumed to prevail at time 𝑡 = 0 and 𝜏0 is the time 𝑡 = 0
tax rate.
In equation (6.3), it is understood that

𝜏0 = 1 − 𝑢𝑙,0
𝑢𝑐,0

𝑅−1
0 = 𝛽

𝑆
∑
𝑠=1

Π(𝑠|𝑠0)𝑢𝑐(𝑠)
𝑢𝑐,0

It is useful to transform some of the above equations to forms that are more natural for analyzing the case of a CRRA
utility specification that we shall use in our example economies.

6.3.2 Specification with CRRA Utility

As in lectures optimal taxation without state-contingent debt and optimal taxation with state-contingent debt, we assume
that the representative agent has utility function

𝑢(𝑐, 𝑛) = 𝑐1−𝜎

1 − 𝜎 − 𝑛1+𝛾

1 + 𝛾
and set 𝜎 = 2, 𝛾 = 2, and the discount factor 𝛽 = 0.9.

134 Chapter 6. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Dynamic Programming

We eliminate leisure from the model and continue to assume that

𝑐𝑡 + 𝑔𝑡 = 𝑛𝑡

The analysis of Lucas and Stokey prevails once we make the following replacements

𝑢ℓ(𝑐, ℓ) ∼ −𝑢𝑛(𝑐, 𝑛)
𝑢𝑐(𝑐, ℓ) ∼ 𝑢𝑐(𝑐, 𝑛)

𝑢ℓ,ℓ(𝑐, ℓ) ∼ 𝑢𝑛𝑛(𝑐, 𝑛)
𝑢𝑐,𝑐(𝑐, ℓ) ∼ 𝑢𝑐,𝑐(𝑐, 𝑛)
𝑢𝑐,ℓ(𝑐, ℓ) ∼ 0

With these understandings, equations (6.1) and (6.2) simplify in the case of the CRRA utility function.
They become

(1 + Φ)[𝑢𝑐(𝑐) + 𝑢𝑛(𝑐 + 𝑔)] + Φ[𝑐𝑢𝑐𝑐(𝑐) + (𝑐 + 𝑔)𝑢𝑛𝑛(𝑐 + 𝑔)] = 0 (6.4)

and

(1 + Φ)[𝑢𝑐(𝑐0) + 𝑢𝑛(𝑐0 + 𝑔0)] + Φ[𝑐0𝑢𝑐𝑐(𝑐0) + (𝑐0 + 𝑔0)𝑢𝑛𝑛(𝑐0 + 𝑔0)] − Φ𝑢𝑐𝑐(𝑐0)𝑏0 = 0 (6.5)

In equation (6.4), it is understood that 𝑐 and 𝑔 are each functions of the Markov state 𝑠.
The CRRA utility function is represented in the following class.

import numpy as np

class CRRAutility:

def __init__(self,
β=0.9,
σ=2,
γ=2,
π=np.full((2, 2), 0.5),
G=np.array([0.1, 0.2]),
Θ=np.ones(2),
transfers=False):

self.β, self.σ, self.γ = β, σ, γ
self.π, self.G, self.Θ, self.transfers = π, G, Θ, transfers

Utility function
def U(self, c, n):

σ = self.σ
if σ == 1.:

U = np.log(c)
else:

U = (c**(1 - σ) - 1) / (1 - σ)
return U - n**(1 + self.γ) / (1 + self.γ)

Derivatives of utility function
def Uc(self, c, n):

return c**(-self.σ)

def Ucc(self, c, n):

(continues on next page)

6.3. Logical Flow of Lecture 135

Advanced Dynamic Programming

(continued from previous page)

return -self.σ * c**(-self.σ - 1)

def Un(self, c, n):
return -n**self.γ

def Unn(self, c, n):
return -self.γ * n**(self.γ - 1)

6.4 Example Economy

We set the following parameter values.
The Markov state 𝑠𝑡 takes two values, namely, 0, 1.
The initial Markov state is 0.
The Markov transition matrix is .5𝐼 where 𝐼 is a 2 × 2 identity matrix, so the 𝑠𝑡 process is IID.
Government expenditures 𝑔(𝑠) equal .1 in Markov state 0 and .2 in Markov state 1.
We set preference parameters as follows:

𝛽 = .9
𝜎 = 2
𝛾 = 2

Here are several classes that do most of the work for us.
The code is mostly taken or adapted from the earlier lectures optimal taxation without state-contingent debt and optimal
taxation with state-contingent debt.

import numpy as np
from scipy.optimize import root
from quantecon import MarkovChain

class SequentialAllocation:

'''
Class that takes CESutility or BGPutility object as input returns
planner's allocation as a function of the multiplier on the
implementability constraint μ.
'''

def __init__(self, model):

Initialize from model object attributes
self.β, self.π, self.G = model.β, model.π, model.G
self.mc, self.Θ = MarkovChain(self.π), model.Θ
self.S = len(model.π) # Number of states
self.model = model

Find the first best allocation
self.find_first_best()

(continues on next page)

136 Chapter 6. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Dynamic Programming

(continued from previous page)

def find_first_best(self):
'''
Find the first best allocation
'''
model = self.model
S, Θ, G = self.S, self.Θ, self.G
Uc, Un = model.Uc, model.Un

def res(z):
c = z[:S]
n = z[S:]
return np.hstack([Θ * Uc(c, n) + Un(c, n), Θ * n - c - G])

res = root(res, np.full(2 * S, 0.5))

if not res.success:
raise Exception('Could not find first best')

self.cFB = res.x[:S]
self.nFB = res.x[S:]

Multiplier on the resource constraint
self.ΞFB = Uc(self.cFB, self.nFB)
self.zFB = np.hstack([self.cFB, self.nFB, self.ΞFB])

def time1_allocation(self, μ):
'''
Computes optimal allocation for time t >= 1 for a given μ
'''
model = self.model
S, Θ, G = self.S, self.Θ, self.G
Uc, Ucc, Un, Unn = model.Uc, model.Ucc, model.Un, model.Unn

def FOC(z):
c = z[:S]
n = z[S:2 * S]
Ξ = z[2 * S:]
FOC of c
return np.hstack([Uc(c, n) - μ * (Ucc(c, n) * c + Uc(c, n)) - Ξ,

Un(c, n) - μ * (Unn(c, n) * n + Un(c, n)) \
+ Θ * Ξ, # FOC of n
Θ * n - c - G])

Find the root of the first-order condition
res = root(FOC, self.zFB)
if not res.success:

raise Exception('Could not find LS allocation.')
z = res.x
c, n, Ξ = z[:S], z[S:2 * S], z[2 * S:]

Compute x
I = Uc(c, n) * c + Un(c, n) * n
x = np.linalg.solve(np.eye(S) - self.β * self.π, I)

return c, n, x, Ξ

(continues on next page)

6.4. Example Economy 137

Advanced Dynamic Programming

(continued from previous page)

def time0_allocation(self, B_, s_0):
'''
Finds the optimal allocation given initial government debt B_ and
state s_0
'''
model, π, Θ, G, β = self.model, self.π, self.Θ, self.G, self.β
Uc, Ucc, Un, Unn = model.Uc, model.Ucc, model.Un, model.Unn

First order conditions of planner's problem
def FOC(z):

μ, c, n, Ξ = z
xprime = self.time1_allocation(μ)[2]
return np.hstack([Uc(c, n) * (c - B_) + Un(c, n) * n + β * π[s_0]

@ xprime,
Uc(c, n) - μ * (Ucc(c, n)

* (c - B_) + Uc(c, n)) - Ξ,
Un(c, n) - μ * (Unn(c, n) * n

+ Un(c, n)) + Θ[s_0] * Ξ,
(Θ * n - c - G)[s_0]])

Find root
res = root(FOC, np.array(

[0, self.cFB[s_0], self.nFB[s_0], self.ΞFB[s_0]]))
if not res.success:

raise Exception('Could not find time 0 LS allocation.')

return res.x

def time1_value(self, μ):
'''
Find the value associated with multiplier μ
'''
c, n, x, Ξ = self.time1_allocation(μ)
U = self.model.U(c, n)
V = np.linalg.solve(np.eye(self.S) - self.β * self.π, U)
return c, n, x, V

def Τ(self, c, n):
'''
Computes Τ given c, n
'''
model = self.model
Uc, Un = model.Uc(c, n), model.Un(c, n)

return 1 + Un / (self.Θ * Uc)

def simulate(self, B_, s_0, T, sHist=None):
'''
Simulates planners policies for T periods
'''
model, π, β = self.model, self.π, self.β
Uc = model.Uc

if sHist is None:
sHist = self.mc.simulate(T, s_0)

(continues on next page)

138 Chapter 6. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Dynamic Programming

(continued from previous page)

cHist, nHist, Bhist, ΤHist, μHist = np.zeros((5, T))
RHist = np.zeros(T - 1)

Time 0
μ, cHist[0], nHist[0], _ = self.time0_allocation(B_, s_0)
ΤHist[0] = self.Τ(cHist[0], nHist[0])[s_0]
Bhist[0] = B_
μHist[0] = μ

Time 1 onward
for t in range(1, T):

c, n, x, Ξ = self.time1_allocation(μ)
Τ = self.Τ(c, n)
u_c = Uc(c, n)
s = sHist[t]
Eu_c = π[sHist[t - 1]] @ u_c
cHist[t], nHist[t], Bhist[t], ΤHist[t] = c[s], n[s], x[s] / u_c[s], \

Τ[s]
RHist[t - 1] = Uc(cHist[t - 1], nHist[t - 1]) / (β * Eu_c)
μHist[t] = μ

return [cHist, nHist, Bhist, ΤHist, sHist, μHist, RHist]

import numpy as np
from scipy.optimize import fmin_slsqp
from scipy.optimize import root
from quantecon import MarkovChain

class RecursiveAllocationAMSS:

def __init__(self, model, μgrid, tol_diff=1e-7, tol=1e-7):

self.β, self.π, self.G = model.β, model.π, model.G
self.mc, self.S = MarkovChain(self.π), len(model.π) # Number of states
self.Θ, self.model, self.μgrid = model.Θ, model, μgrid
self.tol_diff, self.tol = tol_diff, tol

Find the first best allocation
self.solve_time1_bellman()
self.T.time_0 = True # Bellman equation now solves time 0 problem

def solve_time1_bellman(self):
'''
Solve the time 1 Bellman equation for calibration model and
initial grid μgrid0
'''
model, μgrid0 = self.model, self.μgrid
π = model.π
S = len(model.π)

First get initial fit from Lucas Stokey solution.
Need to change things to be ex ante
pp = SequentialAllocation(model)
interp = interpolator_factory(2, None)

(continues on next page)

6.4. Example Economy 139

Advanced Dynamic Programming

(continued from previous page)

def incomplete_allocation(μ_, s_):
c, n, x, V = pp.time1_value(μ_)
return c, n, π[s_] @ x, π[s_] @ V

cf, nf, xgrid, Vf, xprimef = [], [], [], [], []
for s_ in range(S):

c, n, x, V = zip(*map(lambda μ: incomplete_allocation(μ, s_), μgrid0))
c, n = np.vstack(c).T, np.vstack(n).T
x, V = np.hstack(x), np.hstack(V)
xprimes = np.vstack([x] * S)
cf.append(interp(x, c))
nf.append(interp(x, n))
Vf.append(interp(x, V))
xgrid.append(x)
xprimef.append(interp(x, xprimes))

cf, nf, xprimef = fun_vstack(cf), fun_vstack(nf), fun_vstack(xprimef)
Vf = fun_hstack(Vf)
policies = [cf, nf, xprimef]

Create xgrid
x = np.vstack(xgrid).T
xbar = [x.min(0).max(), x.max(0).min()]
xgrid = np.linspace(xbar[0], xbar[1], len(μgrid0))
self.xgrid = xgrid

Now iterate on Bellman equation
T = BellmanEquation(model, xgrid, policies, tol=self.tol)
diff = 1
while diff > self.tol_diff:

PF = T(Vf)

Vfnew, policies = self.fit_policy_function(PF)
diff = np.abs((Vf(xgrid) - Vfnew(xgrid)) / Vf(xgrid)).max()

print(diff)
Vf = Vfnew

Store value function policies and Bellman Equations
self.Vf = Vf
self.policies = policies
self.T = T

def fit_policy_function(self, PF):
'''
Fits the policy functions
'''
S, xgrid = len(self.π), self.xgrid
interp = interpolator_factory(3, 0)
cf, nf, xprimef, Tf, Vf = [], [], [], [], []
for s_ in range(S):

PFvec = np.vstack([PF(x, s_) for x in self.xgrid]).T
Vf.append(interp(xgrid, PFvec[0, :]))
cf.append(interp(xgrid, PFvec[1:1 + S]))
nf.append(interp(xgrid, PFvec[1 + S:1 + 2 * S]))
xprimef.append(interp(xgrid, PFvec[1 + 2 * S:1 + 3 * S]))
Tf.append(interp(xgrid, PFvec[1 + 3 * S:]))

(continues on next page)

140 Chapter 6. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Dynamic Programming

(continued from previous page)

policies = fun_vstack(cf), fun_vstack(
nf), fun_vstack(xprimef), fun_vstack(Tf)

Vf = fun_hstack(Vf)
return Vf, policies

def Τ(self, c, n):
'''
Computes Τ given c and n
'''
model = self.model
Uc, Un = model.Uc(c, n), model.Un(c, n)

return 1 + Un / (self.Θ * Uc)

def time0_allocation(self, B_, s0):
'''
Finds the optimal allocation given initial government debt B_ and
state s_0
'''
PF = self.T(self.Vf)
z0 = PF(B_, s0)
c0, n0, xprime0, T0 = z0[1:]
return c0, n0, xprime0, T0

def simulate(self, B_, s_0, T, sHist=None):
'''
Simulates planners policies for T periods
'''
model, π = self.model, self.π
Uc = model.Uc
cf, nf, xprimef, Tf = self.policies

if sHist is None:
sHist = simulate_markov(π, s_0, T)

cHist, nHist, Bhist, xHist, ΤHist, THist, μHist = np.zeros((7, T))
Time 0
cHist[0], nHist[0], xHist[0], THist[0] = self.time0_allocation(B_, s_0)
ΤHist[0] = self.Τ(cHist[0], nHist[0])[s_0]
Bhist[0] = B_
μHist[0] = self.Vf[s_0](xHist[0])

Time 1 onward
for t in range(1, T):

s_, x, s = sHist[t - 1], xHist[t - 1], sHist[t]
c, n, xprime, T = cf[s_, :](x), nf[s_, :](

x), xprimef[s_, :](x), Tf[s_, :](x)

Τ = self.Τ(c, n)[s]
u_c = Uc(c, n)
Eu_c = π[s_, :] @ u_c

μHist[t] = self.Vf[s](xprime[s])

cHist[t], nHist[t], Bhist[t], ΤHist[t] = c[s], n[s], x / Eu_c, Τ
xHist[t], THist[t] = xprime[s], T[s]

(continues on next page)

6.4. Example Economy 141

Advanced Dynamic Programming

(continued from previous page)

return [cHist, nHist, Bhist, ΤHist, THist, μHist, sHist, xHist]

class BellmanEquation:
'''
Bellman equation for the continuation of the Lucas-Stokey Problem
'''

def __init__(self, model, xgrid, policies0, tol, maxiter=1000):

self.β, self.π, self.G = model.β, model.π, model.G
self.S = len(model.π) # Number of states
self.Θ, self.model, self.tol = model.Θ, model, tol
self.maxiter = maxiter

self.xbar = [min(xgrid), max(xgrid)]
self.time_0 = False

self.z0 = {}
cf, nf, xprimef = policies0

for s_ in range(self.S):
for x in xgrid:

self.z0[x, s_] = np.hstack([cf[s_, :](x),
nf[s_, :](x),
xprimef[s_, :](x),
np.zeros(self.S)])

self.find_first_best()

def find_first_best(self):
'''
Find the first best allocation
'''
model = self.model
S, Θ, Uc, Un, G = self.S, self.Θ, model.Uc, model.Un, self.G

def res(z):
c = z[:S]
n = z[S:]
return np.hstack([Θ * Uc(c, n) + Un(c, n), Θ * n - c - G])

res = root(res, np.full(2 * S, 0.5))
if not res.success:

raise Exception('Could not find first best')

self.cFB = res.x[:S]
self.nFB = res.x[S:]
IFB = Uc(self.cFB, self.nFB) * self.cFB + \

Un(self.cFB, self.nFB) * self.nFB

self.xFB = np.linalg.solve(np.eye(S) - self.β * self.π, IFB)

self.zFB = {}
for s in range(S):

self.zFB[s] = np.hstack(

(continues on next page)

142 Chapter 6. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Dynamic Programming

(continued from previous page)

[self.cFB[s], self.nFB[s], self.π[s] @ self.xFB, 0.])

def __call__(self, Vf):
'''
Given continuation value function next period return value function this
period return T(V) and optimal policies
'''
if not self.time_0:

def PF(x, s): return self.get_policies_time1(x, s, Vf)
else:

def PF(B_, s0): return self.get_policies_time0(B_, s0, Vf)
return PF

def get_policies_time1(self, x, s_, Vf):
'''
Finds the optimal policies
'''
model, β, Θ, G, S, π = self.model, self.β, self.Θ, self.G, self.S, self.π
U, Uc, Un = model.U, model.Uc, model.Un

def objf(z):
c, n, xprime = z[:S], z[S:2 * S], z[2 * S:3 * S]

Vprime = np.empty(S)
for s in range(S):

Vprime[s] = Vf[s](xprime[s])

return -π[s_] @ (U(c, n) + β * Vprime)

def objf_prime(x):

epsilon = 1e-7
x0 = np.asfarray(x)
f0 = np.atleast_1d(objf(x0))
jac = np.zeros([len(x0), len(f0)])
dx = np.zeros(len(x0))
for i in range(len(x0)):

dx[i] = epsilon
jac[i] = (objf(x0+dx) - f0)/epsilon
dx[i] = 0.0

return jac.transpose()

def cons(z):
c, n, xprime, T = z[:S], z[S:2 * S], z[2 * S:3 * S], z[3 * S:]
u_c = Uc(c, n)
Eu_c = π[s_] @ u_c
return np.hstack([

x * u_c / Eu_c - u_c * (c - T) - Un(c, n) * n - β * xprime,
Θ * n - c - G])

if model.transfers:
bounds = [(0., 100)] * S + [(0., 100)] * S + \

[self.xbar] * S + [(0., 100.)] * S
else:

bounds = [(0., 100)] * S + [(0., 100)] * S + \

(continues on next page)

6.4. Example Economy 143

Advanced Dynamic Programming

(continued from previous page)

[self.xbar] * S + [(0., 0.)] * S
out, fx, _, imode, smode = fmin_slsqp(objf, self.z0[x, s_],

f_eqcons=cons, bounds=bounds,
fprime=objf_prime, full_output=True,
iprint=0, acc=self.tol, iter=self.

↪maxiter)

if imode > 0:
raise Exception(smode)

self.z0[x, s_] = out
return np.hstack([-fx, out])

def get_policies_time0(self, B_, s0, Vf):
'''
Finds the optimal policies
'''
model, β, Θ, G = self.model, self.β, self.Θ, self.G
U, Uc, Un = model.U, model.Uc, model.Un

def objf(z):
c, n, xprime = z[:-1]

return -(U(c, n) + β * Vf[s0](xprime))

def cons(z):
c, n, xprime, T = z
return np.hstack([

-Uc(c, n) * (c - B_ - T) - Un(c, n) * n - β * xprime,
(Θ * n - c - G)[s0]])

if model.transfers:
bounds = [(0., 100), (0., 100), self.xbar, (0., 100.)]

else:
bounds = [(0., 100), (0., 100), self.xbar, (0., 0.)]

out, fx, _, imode, smode = fmin_slsqp(objf, self.zFB[s0], f_eqcons=cons,
bounds=bounds, full_output=True,
iprint=0)

if imode > 0:
raise Exception(smode)

return np.hstack([-fx, out])

import numpy as np
from scipy.interpolate import UnivariateSpline

class interpolate_wrapper:

def __init__(self, F):
self.F = F

def __getitem__(self, index):
return interpolate_wrapper(np.asarray(self.F[index]))

(continues on next page)

144 Chapter 6. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Dynamic Programming

(continued from previous page)

def reshape(self, *args):
self.F = self.F.reshape(*args)
return self

def transpose(self):
self.F = self.F.transpose()

def __len__(self):
return len(self.F)

def __call__(self, xvec):
x = np.atleast_1d(xvec)
shape = self.F.shape
if len(x) == 1:

fhat = np.hstack([f(x) for f in self.F.flatten()])
return fhat.reshape(shape)

else:
fhat = np.vstack([f(x) for f in self.F.flatten()])
return fhat.reshape(np.hstack((shape, len(x))))

class interpolator_factory:

def __init__(self, k, s):
self.k, self.s = k, s

def __call__(self, xgrid, Fs):
shape, m = Fs.shape[:-1], Fs.shape[-1]
Fs = Fs.reshape((-1, m))
F = []
xgrid = np.sort(xgrid) # Sort xgrid
for Fhat in Fs:

F.append(UnivariateSpline(xgrid, Fhat, k=self.k, s=self.s))
return interpolate_wrapper(np.array(F).reshape(shape))

def fun_vstack(fun_list):

Fs = [IW.F for IW in fun_list]
return interpolate_wrapper(np.vstack(Fs))

def fun_hstack(fun_list):

Fs = [IW.F for IW in fun_list]
return interpolate_wrapper(np.hstack(Fs))

def simulate_markov(π, s_0, T):

sHist = np.empty(T, dtype=int)
sHist[0] = s_0
S = len(π)
for t in range(1, T):

sHist[t] = np.random.choice(np.arange(S), p=π[sHist[t - 1]])

(continues on next page)

6.4. Example Economy 145

Advanced Dynamic Programming

(continued from previous page)

return sHist

6.5 Reverse Engineering Strategy

We can reverse engineer a value 𝑏0 of initial debt due that renders the AMSS measurability constraints not binding from
time 𝑡 = 0 onward.
We accomplish this by recognizing that if the AMSS measurability constraints never bind, then the AMSS allocation and
Ramsey plan is equivalent with that for a Lucas-Stokey economy in which for each period 𝑡 ≥ 0, the government promises
to pay the same state-contingent amount �̄� in each state tomorrow.
This insight tells us to find a 𝑏0 and other fundamentals for the Lucas-Stokey [LS83] model that make the Ramsey planner
want to borrow the same value �̄� next period for all states and all dates.
We accomplish this by using various equations for the Lucas-Stokey [LS83] model presented in optimal taxation with
state-contingent debt.
We use the following steps.
Step 1: Pick an initial Φ.
Step 2: Given that Φ, jointly solve two versions of equation (6.4) for 𝑐(𝑠), 𝑠 = 1, 2 associated with the two values for
𝑔(𝑠), 𝑠 = 1, 2.
Step 3: Solve the following equation for ⃗𝑥

⃗𝑥 = (𝐼 − 𝛽Π)−1[�⃗�𝑐(�⃗� − ⃗𝑔) − �⃗�𝑙�⃗�] (6.6)

Step 4: After solving for ⃗𝑥, we can find 𝑏(𝑠𝑡|𝑠𝑡−1) in Markov state 𝑠𝑡 = 𝑠 from 𝑏(𝑠) = 𝑥(𝑠)
𝑢𝑐(𝑠) or the matrix equation

⃗𝑏 = ⃗𝑥
�⃗�𝑐

(6.7)

Step 5: Compute 𝐽(Φ) = (𝑏(1) − 𝑏(2))2.
Step 6: Put steps 2 through 6 in a function minimizer and find a Φ that minimizes 𝐽(Φ).
Step 7: At the value of Φ and the value of �̄� that emerged from step 6, solve equations (6.5) and (6.3) jointly for 𝑐0, 𝑏0.

6.6 Code for Reverse Engineering

Here is code to do the calculations for us.

u = CRRAutility()

def min_Φ(Φ):

g1, g2 = u.G # Government spending in s=0 and s=1

Solve Φ(c)
def equations(unknowns, Φ):

c1, c2 = unknowns

(continues on next page)

146 Chapter 6. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Dynamic Programming

(continued from previous page)

First argument of .Uc and second argument of .Un are redundant

Set up simultaneous equations
eq = lambda c, g: (1 + Φ) * (u.Uc(c, 1) - -u.Un(1, c + g)) + \

Φ * ((c + g) * u.Unn(1, c + g) + c * u.Ucc(c, 1))

Return equation evaluated at s=1 and s=2
return np.array([eq(c1, g1), eq(c2, g2)]).flatten()

global c1 # Update c1 globally
global c2 # Update c2 globally

c1, c2 = fsolve(equations, np.ones(2), args=(Φ))

uc = u.Uc(np.array([c1, c2]), 1) # uc(n - g)
ul(n) = -un(c + g)
ul = -u.Un(1, np.array([c1 + g1, c2 + g2])) * [c1 + g1, c2 + g2]
Solve for x
x = np.linalg.solve(np.eye((2)) - u.β * u.π, uc * [c1, c2] - ul)

global b # Update b globally
b = x / uc
loss = (b[0] - b[1])**2

return loss

Φ_star = fmin(min_Φ, .1, ftol=1e-14)

Optimization terminated successfully.
Current function value: 0.000000
Iterations: 24
Function evaluations: 48

To recover and print out �̄�

b_bar = b[0]
b_bar

-1.0757576567504166

To complete the reverse engineering exercise by jointly determining 𝑐0, 𝑏0, we set up a function that returns two simul-
taneous equations.

def solve_cb(unknowns, Φ, b_bar, s=1):

c0, b0 = unknowns

g0 = u.G[s-1]

R_0 = u.β * u.π[s] @ [u.Uc(c1, 1) / u.Uc(c0, 1), u.Uc(c2, 1) / u.Uc(c0, 1)]
R_0 = 1 / R_0

τ_0 = 1 + u.Un(1, c0 + g0) / u.Uc(c0, 1)

(continues on next page)

6.6. Code for Reverse Engineering 147

Advanced Dynamic Programming

(continued from previous page)

eq1 = τ_0 * (c0 + g0) + b_bar / R_0 - b0 - g0
eq2 = (1 + Φ) * (u.Uc(c0, 1) + u.Un(1, c0 + g0)) \

+ Φ * (c0 * u.Ucc(c0, 1) + (c0 + g0) * u.Unn(1, c0 + g0)) \
- Φ * u.Ucc(c0, 1) * b0

return np.array([eq1, eq2.item()], dtype='float64')

To solve the equations for 𝑐0, 𝑏0, we use SciPy’s fsolve function

c0, b0 = fsolve(solve_cb, np.array([1., -1.], dtype='float64'),
args=(Φ_star, b[0], 1), xtol=1.0e-12)

c0, b0

(0.9344994030900681, -1.0386984075517638)

Thus, we have reverse engineered an initial 𝑏0 = −1.038698407551764 that ought to render the AMSS measurability
constraints slack.

6.7 Short Simulation for Reverse-engineered: Initial Debt

The following graph shows simulations of outcomes for both a Lucas-Stokey economy and for an AMSS economy starting
from initial government debt equal to 𝑏0 = −1.038698407551764.
These graphs report outcomes for both the Lucas-Stokey economy with complete markets and the AMSS economy with
one-period risk-free debt only.

μ_grid = np.linspace(-0.09, 0.1, 100)

log_example = CRRAutility()

log_example.transfers = True # Government can use transfers
log_sequential = SequentialAllocation(log_example) # Solve sequential problem
log_bellman = RecursiveAllocationAMSS(log_example, μ_grid,

tol_diff=1e-10, tol=1e-10)

T = 20
sHist = np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1,

0, 0, 0, 1, 1, 1, 1, 1, 1, 0])

sim_seq = log_sequential.simulate(-1.03869841, 0, T, sHist)
sim_bel = log_bellman.simulate(-1.03869841, 0, T, sHist)

titles = ['Consumption', 'Labor Supply', 'Government Debt',
'Tax Rate', 'Government Spending', 'Output']

Government spending paths
sim_seq[4] = log_example.G[sHist]
sim_bel[4] = log_example.G[sHist]

Output paths
sim_seq[5] = log_example.Θ[sHist] * sim_seq[1]

(continues on next page)

148 Chapter 6. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Dynamic Programming

(continued from previous page)

sim_bel[5] = log_example.Θ[sHist] * sim_bel[1]

fig, axes = plt.subplots(3, 2, figsize=(14, 10))

for ax, title, seq, bel in zip(axes.flatten(), titles, sim_seq, sim_bel):
ax.plot(seq, '-ok', bel, '-^b')
ax.set(title=title)
ax.grid()

axes[0, 0].legend(('Complete Markets', 'Incomplete Markets'))
plt.tight_layout()
plt.show()

/home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages/scipy/optimize/
↪_optimize.py:404: RuntimeWarning: Values in x were outside bounds during a␣
↪minimize step, clipping to bounds
warnings.warn("Values in x were outside bounds during a "

/tmp/ipykernel_2232/108196118.py:24: RuntimeWarning: divide by zero encountered in␣
↪reciprocal
U = (c**(1 - σ) - 1) / (1 - σ)

/tmp/ipykernel_2232/108196118.py:29: RuntimeWarning: divide by zero encountered in␣
↪power
return c**(-self.σ)

/tmp/ipykernel_2232/1277371586.py:249: RuntimeWarning: invalid value encountered␣
↪in divide
x * u_c / Eu_c - u_c * (c - T) - Un(c, n) * n - β * xprime,

/tmp/ipykernel_2232/1277371586.py:249: RuntimeWarning: invalid value encountered␣
↪in multiply
x * u_c / Eu_c - u_c * (c - T) - Un(c, n) * n - β * xprime,

0.04094445433232542

0.001673211146137493

0.001484674847917127

0.001313772136887205

0.0011814037130420663

0.001055965336102068

0.0009446661649946108

0.0008463807319492324

0.0007560453788611131

6.7. Short Simulation for Reverse-engineered: Initial Debt 149

Advanced Dynamic Programming

0.0006756001033938903

0.000604152845540819

0.0005396004518747859

0.00048207169166290613

0.00043082732064067867

0.00038481851351225495

0.000343835217593145

0.0003072436935049677

0.0002745009146233244

0.00024531773293589513

0.00021923324298642947

0.00019593539310787213

0.00017514303481690137

0.0001565593985003591

0.00013996737081815812

0.00012514457789841946

0.00011190070823325749

0.0001000702000922041

8.949728534363834e-05

8.00497532414663e-05

7.160585250570457e-05

150 Chapter 6. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Dynamic Programming

6.405840591557493e-05

5.731160522780524e-05

5.1279701373366633e-05

4.588651722582404e-05

4.106390497232627e-05

3.6750969979187823e-05

3.289357328148953e-05

2.9443322731171715e-05

2.6356778254647064e-05

2.3595477005441402e-05

2.1124867549068547e-05

1.8914292342161616e-05

1.6935989661294087e-05

1.5165570482803087e-05

1.3581075188566359e-05

1.2162766163347089e-05

1.0893227516817513e-05

9.756678182519297e-06

8.739234428152772e-06

7.828320614508025e-06

7.012602839408298e-06

6.7. Short Simulation for Reverse-engineered: Initial Debt 151

Advanced Dynamic Programming

6.2821988113865695e-06

5.628118884533389e-06

5.0424276120745635e-06

4.517800318375349e-06

4.048011435284343e-06
3.6271819852132397e-06

3.250228025571809e-06

2.91255521672949e-06
2.6100632205124585e-06

2.339096372677708e-06

2.096300057053759e-06

1.8787856014677842e-06
1.6838896002658147e-06

1.5092763000475938e-06
1.352790440377663e-06

1.2125870135921682e-06
1.0869367592654264e-06

9.74329344948381e-07
8.734258726613521e-07

7.82979401245993e-07
7.019280421759928e-07

6.292786681149374e-07
5.641636376342722e-07

5.058008139530142e-07
4.5348427330256424e-07

4.0659062310367744e-07
3.6455314441729855e-07

152 Chapter 6. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Dynamic Programming

3.2687002299145745e-07
2.930882045255147e-07

2.6280345786809706e-07
2.356529429295176e-07

2.1131168850248635e-07
1.8948851788438695e-07

1.6992245629426705e-07
1.5237965358488245e-07

1.3665054480740185e-07
1.2254729288266142e-07

1.0990157880047098e-07
9.85625196806722e-08

8.839490296454315e-08
7.927751099544721e-08

7.110169892267009e-08
6.377012234144897e-08

5.719543299951795e-08
5.129944108294742e-08

4.6011930465755267e-08
4.127024907212617e-08

3.7017901411273995e-08
3.320421136675924e-08

2.9783836454122435e-08
2.6716185879207155e-08

2.3964828404060055e-08
2.1497111441656643e-08

1.928376711102591e-08
1.7298534286134342e-08

1.5517887041510468e-08
1.3920711115842077e-08

6.7. Short Simulation for Reverse-engineered: Initial Debt 153

Advanced Dynamic Programming

1.2488086772484325e-08
1.120303914946054e-08

1.0050349805051883e-08
9.016372957223345e-09

8.088867717275256e-09
7.256860052028448e-09

6.5105080491085e-09
5.8409842196277625e-09

5.240371187393206e-09
4.701571286205833e-09

4.2182149401635156e-09
3.784594252430241e-09

3.3955835551064364e-09
3.0465910785331343e-09

2.7334965385949916e-09
2.4526029798499404e-09

2.2005967896788517e-09
1.9745023230252437e-09

1.7716540861495694e-09
1.5896779606666392e-09

1.4263644656786832e-09
1.279915801041798e-09

1.1484611488603225e-09
1.0305702313922867e-09

9.247647878021015e-10
8.298468061604299e-10

7.446744286173443e-10
6.682506157688693e-10

5.996765544062293e-10
5.381420956749845e-10

154 Chapter 6. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Dynamic Programming

4.829271458904042e-10
4.3337871811544764e-10

3.8891892933983235e-10
3.4902066124392655e-10

3.1321799130111273e-10
2.8109002457092086e-10

2.5225950288597284e-10
2.263868938948011e-10

2.0316830484184638e-10
1.8233409175417047e-10

1.6363582056463494e-10
1.4685617665861112e-10

1.3179940303096093e-10
1.1828486777347211e-10

1.0615888599012755e-10
9.527490070407684e-11

6.7. Short Simulation for Reverse-engineered: Initial Debt 155

Advanced Dynamic Programming

The Ramsey allocations and Ramsey outcomes are identical for the Lucas-Stokey and AMSS economies.
This outcome confirms the success of our reverse-engineering exercises.
Notice how for 𝑡 ≥ 1, the tax rate is a constant - so is the par value of government debt.
However, output and labor supply are both nontrivial time-invariant functions of the Markov state.

6.8 Long Simulation

The following graph shows the par value of government debt and the flat-rate tax on labor income for a long simulation
for our sample economy.
For the same realization of a government expenditure path, the graph reports outcomes for two economies

• the gray lines are for the Lucas-Stokey economy with complete markets
• the blue lines are for the AMSS economy with risk-free one-period debt only

For both economies, initial government debt due at time 0 is 𝑏0 = .5.
For the Lucas-Stokey complete markets economy, the government debt plotted is 𝑏𝑡+1(𝑠𝑡+1).

• Notice that this is a time-invariant function of the Markov state from the beginning.
For the AMSS incomplete markets economy, the government debt plotted is 𝑏𝑡+1(𝑠𝑡).

• Notice that this is a martingale-like random process that eventually seems to converge to a constant �̄� ≈ −1.07.
• Notice that the limiting value �̄� < 0 so that asymptotically the government makes a constant level of risk-free loans
to the public.

• In the simulation displayed as well as other simulations we have run, the par value of government debt converges
to about 1.07 after between 1400 to 2000 periods.

For the AMSS incomplete markets economy, the marginal tax rate on labor income 𝜏𝑡 converges to a constant
• labor supply and output each converge to time-invariant functions of the Markov state

T = 2000 # Set T to 200 periods

sim_seq_long = log_sequential.simulate(0.5, 0, T)
sHist_long = sim_seq_long[-3]
sim_bel_long = log_bellman.simulate(0.5, 0, T, sHist_long)

titles = ['Government Debt', 'Tax Rate']

fig, axes = plt.subplots(2, 1, figsize=(14, 10))

for ax, title, id in zip(axes.flatten(), titles, [2, 3]):
ax.plot(sim_seq_long[id], '-k', sim_bel_long[id], '-.b', alpha=0.5)
ax.set(title=title)
ax.grid()

axes[0].legend(('Complete Markets', 'Incomplete Markets'))
plt.tight_layout()
plt.show()

156 Chapter 6. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Dynamic Programming

6.8.1 Remarks about Long Simulation

As remarked above, after 𝑏𝑡+1(𝑠𝑡) has converged to a constant, the measurability constraints in the AMSS model cease
to bind

• the associated Lagrange multipliers on those implementability constraints converge to zero
This leads us to seek an initial value of government debt 𝑏0 that renders the measurability constraints slack from time
𝑡 = 0 onward

• a tell-tale sign of this situation is that the Ramsey planner in a corresponding Lucas-Stokey economy would instruct
the government to issue a constant level of government debt 𝑏𝑡+1(𝑠𝑡+1) across the two Markov states

We now describe how to find such an initial level of government debt.

6.9 BEGS Approximations of Limiting Debt and Convergence Rate

It is useful to link the outcome of our reverse engineering exercise to limiting approximations constructed by BEGS
[BEGS17].
BEGS [BEGS17] used a slightly different notation to represent a generalization of the AMSS model.
We’ll introduce a version of their notation so that readers can quickly relate notation that appears in their key formulas to
the notation that we have used.

6.9. BEGS Approximations of Limiting Debt and Convergence Rate 157

Advanced Dynamic Programming

BEGS work with objects 𝐵𝑡, ℬ𝑡, ℛ𝑡, 𝒳𝑡 that are related to our notation by

ℛ𝑡 = 𝑢𝑐,𝑡
𝑢𝑐,𝑡−1

𝑅𝑡−1 = 𝑢𝑐,𝑡
𝛽𝐸𝑡−1𝑢𝑐,𝑡

𝐵𝑡 = 𝑏𝑡+1(𝑠𝑡)
𝑅𝑡(𝑠𝑡)

𝑏𝑡(𝑠𝑡−1) = ℛ𝑡−1𝐵𝑡−1
ℬ𝑡 = 𝑢𝑐,𝑡𝐵𝑡 = (𝛽𝐸𝑡𝑢𝑐,𝑡+1)𝑏𝑡+1(𝑠𝑡)
𝒳𝑡 = 𝑢𝑐,𝑡[𝑔𝑡 − 𝜏𝑡𝑛𝑡]

In terms of their notation, equation (44) of [BEGS17] expresses the time 𝑡 state 𝑠 government budget constraint as

ℬ(𝑠) = ℛ𝜏(𝑠, 𝑠−)ℬ− + 𝒳𝜏(𝑠)(𝑠) (6.8)

where the dependence on 𝜏 is to remind us that these objects depend on the tax rate and 𝑠− is last period’s Markov state.
BEGS interpret random variations in the right side of (6.8) as a measure of fiscal risk composed of

• interest-rate-driven fluctuations in time 𝑡 effective payments due on the government portfolio, namely,
ℛ𝜏(𝑠, 𝑠−)ℬ−, and

• fluctuations in the effective government deficit 𝒳𝑡

6.9.1 Asymptotic Mean

BEGS give conditions under which the ergodic mean of ℬ𝑡 is

ℬ∗ = −cov∞(ℛ, 𝒳)
var∞(ℛ) (6.9)

where the superscript ∞ denotes a moment taken with respect to an ergodic distribution.
Formula (6.9) presents ℬ∗ as a regression coefficient of 𝒳𝑡 on ℛ𝑡 in the ergodic distribution.
This regression coefficient emerges as the minimizer for a variance-minimization problem:

ℬ∗ = argminℬvar(ℛℬ + 𝒳) (6.10)

The minimand in criterion (6.10) is the measure of fiscal risk associated with a given tax-debt policy that appears on the
right side of equation (6.8).
Expressing formula (6.9) in terms of our notation tells us that �̄� should approximately equal

̂𝑏 = ℬ∗

𝛽𝐸𝑡𝑢𝑐,𝑡+1
(6.11)

6.9.2 Rate of Convergence

BEGS also derive the following approximation to the rate of convergence to ℬ∗ from an arbitrary initial condition.

𝐸𝑡(ℬ𝑡+1 − ℬ∗)
(ℬ𝑡 − ℬ∗) ≈ 1

1 + 𝛽2var(ℛ) (6.12)

(See the equation above equation (47) in [BEGS17])

158 Chapter 6. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Dynamic Programming

6.9.3 Formulas and Code Details

For our example, we describe some code that we use to compute the steady state mean and the rate of convergence to it.
The values of 𝜋(𝑠) are 0.5, 0.5.
We can then construct 𝒳(𝑠), ℛ(𝑠), 𝑢𝑐(𝑠) for our two states using the definitions above.
We can then construct 𝛽𝐸𝑡−1𝑢𝑐 = 𝛽 ∑𝑠 𝑢𝑐(𝑠)𝜋(𝑠), cov(ℛ(𝑠), 𝒳(𝑠)) and var(ℛ(𝑠)) to be plugged into formula (6.11).
We also want to compute var(𝒳).
To compute the variances and covariance, we use the following standard formulas.
Temporarily let 𝑥(𝑠), 𝑠 = 1, 2 be an arbitrary random variables.
Then we define

𝜇𝑥 = ∑
𝑠

𝑥(𝑠)𝜋(𝑠)

var(𝑥) = (∑
𝑠

∑
𝑠

𝑥(𝑠)2𝜋(𝑠)) − 𝜇2
𝑥

cov(𝑥, 𝑦) = (∑
𝑠

𝑥(𝑠)𝑦(𝑠)𝜋(𝑠)) − 𝜇𝑥𝜇𝑦

After we compute these moments, we compute the BEGS approximation to the asymptotic mean ̂𝑏 in formula (6.11).
After that, we move on to compute ℬ∗ in formula (6.9).
We’ll also evaluate the BEGS criterion (6.8) at the limiting value ℬ∗

𝐽(ℬ∗) = var(ℛ) (ℬ∗)2 + 2ℬ∗cov(ℛ, 𝒳) + var(𝒳) (6.13)

Here are some functions that we’ll use to compute key objects that we want

def mean(x):
'''Returns mean for x given initial state'''
x = np.array(x)
return x @ u.π[s]

def variance(x):
x = np.array(x)
return x**2 @ u.π[s] - mean(x)**2

def covariance(x, y):
x, y = np.array(x), np.array(y)
return x * y @ u.π[s] - mean(x) * mean(y)

Now let’s form the two random variables ℛ, 𝒳 appearing in the BEGS approximating formulas

u = CRRAutility()

s = 0
c = [0.940580824225584, 0.8943592757759343] # Vector for c
g = u.G # Vector for g
n = c + g # Total population
τ = lambda s: 1 + u.Un(1, n[s]) / u.Uc(c[s], 1)

(continues on next page)

6.9. BEGS Approximations of Limiting Debt and Convergence Rate 159

Advanced Dynamic Programming

(continued from previous page)

R_s = lambda s: u.Uc(c[s], n[s]) / (u.β * (u.Uc(c[0], n[0]) * u.π[0, 0] \
+ u.Uc(c[1], n[1]) * u.π[1, 0]))

X_s = lambda s: u.Uc(c[s], n[s]) * (g[s] - τ(s) * n[s])

R = [R_s(0), R_s(1)]
X = [X_s(0), X_s(1)]

print(f"R, X = {R}, {X}")

R, X = [1.055169547122964, 1.1670526750992583], [0.06357685646224803, 0.
↪19251010100512958]

Now let’s compute the ingredient of the approximating limit and the approximating rate of convergence

bstar = -covariance(R, X) / variance(R)
div = u.β * (u.Uc(c[0], n[0]) * u.π[s, 0] + u.Uc(c[1], n[1]) * u.π[s, 1])
bhat = bstar / div
bhat

-1.0757585378303758

Print out ̂𝑏 and �̄�

bhat, b_bar

(-1.0757585378303758, -1.0757576567504166)

So we have

bhat - b_bar

-8.810799592140484e-07

These outcomes show that ̂𝑏 does a remarkably good job of approximating �̄�.
Next, let’s compute the BEGS fiscal criterion that ̂𝑏 is minimizing

Jmin = variance(R) * bstar**2 + 2 * bstar * covariance(R, X) + variance(X)
Jmin

-9.020562075079397e-17

This is machine zero, a verification that ̂𝑏 succeeds in minimizing the nonnegative fiscal cost criterion 𝐽(ℬ∗) defined in
BEGS and in equation (6.13) above.
Let’s push our luck and compute the mean reversion speed in the formula above equation (47) in [BEGS17].

den2 = 1 + (u.β**2) * variance(R)
speedrever = 1/den2
print(f'Mean reversion speed = {speedrever}')

160 Chapter 6. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Dynamic Programming

Mean reversion speed = 0.9974715478249827

Now let’s compute the implied meantime to get to within 0.01 of the limit

ttime = np.log(.01) / np.log(speedrever)
print(f"Time to get within .01 of limit = {ttime}")

Time to get within .01 of limit = 1819.0360880098472

The slow rate of convergence and the implied time of getting within one percent of the limiting value do a good job of
approximating our long simulation above.
In a subsequent lecture we shall study an extension of the model in which the force highlighted in this lecture causes
government debt to converge to a nontrivial distribution instead of the single debt level discovered here.

6.9. BEGS Approximations of Limiting Debt and Convergence Rate 161

Advanced Dynamic Programming

162 Chapter 6. Fluctuating Interest Rates Deliver Fiscal Insurance

CHAPTER

SEVEN

FISCAL RISK AND GOVERNMENT DEBT

Contents

• Fiscal Risk and Government Debt

– Overview

– The Economy

– Long Simulation

– Asymptotic Mean and Rate of Convergence

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

7.1 Overview

This lecture studies government debt in an AMSS economy [AMSSeppala02] of the type described in Optimal Taxation
without State-Contingent Debt.
We study the behavior of government debt as time 𝑡 → +∞.
We use these techniques

• simulations
• a regression coefficient from the tail of a long simulation that allows us to verify that the asymptotic mean of
government debt solves a fiscal-risk minimization problem

• an approximation to the mean of an ergodic distribution of government debt
• an approximation to the rate of convergence to an ergodic distribution of government debt

We apply tools that are applicable to more general incomplete markets economies that are presented on pages 648 - 650
in section III.D of [BEGS17] (BEGS).
We study an AMSS economy [AMSSeppala02] with three Markov states driving government expenditures.

• In a previous lecture, we showed that with only two Markov states, it is possible that endogenous interest rate
fluctuations eventually can support complete markets allocations and Ramsey outcomes.

• The presence of three states prevents the full spanning that eventually prevails in the two-state example featured in
Fiscal Insurance via Fluctuating Interest Rates.

163

Advanced Dynamic Programming

The lack of full spanning means that the ergodic distribution of the par value of government debt is nontrivial, in contrast
to the situation in Fiscal Insurance via Fluctuating Interest Rates in which the ergodic distribution of the par value of
government debt is concentrated on one point.
Nevertheless, [BEGS17] (BEGS) establish that, for general settings that include ours, the Ramsey planner steers govern-
ment assets to a level that comes as close as possible to providing full spanning in a precise a sense defined by BEGS
that we describe below.
We use code constructed in Fluctuating Interest Rates Deliver Fiscal Insurance.
Warning: Key equations in [BEGS17] section III.D carry typos that we correct below.
Let’s start with some imports:

import matplotlib.pyplot as plt
%matplotlib inline
from scipy.optimize import minimize

7.2 The Economy

As in Optimal Taxation without State-Contingent Debt and Optimal Taxation with State-Contingent Debt, we assume that
the representative agent has utility function

𝑢(𝑐, 𝑛) = 𝑐1−𝜎

1 − 𝜎 − 𝑛1+𝛾

1 + 𝛾
We work directly with labor supply instead of leisure.
We assume that

𝑐𝑡 + 𝑔𝑡 = 𝑛𝑡

The Markov state 𝑠𝑡 takes three values, namely, 0, 1, 2.
The initial Markov state is 0.
The Markov transition matrix is (1/3)𝐼 where 𝐼 is a 3 × 3 identity matrix, so the 𝑠𝑡 process is IID.
Government expenditures 𝑔(𝑠) equal .1 in Markov state 0, .2 in Markov state 1, and .3 in Markov state 2.
We set preference parameters

𝛽 = .9
𝜎 = 2
𝛾 = 2

The following Python code sets up the economy

import numpy as np

class CRRAutility:

def __init__(self,
β=0.9,
σ=2,
γ=2,

(continues on next page)

164 Chapter 7. Fiscal Risk and Government Debt

Advanced Dynamic Programming

(continued from previous page)

π=np.full((2, 2), 0.5),
G=np.array([0.1, 0.2]),
Θ=np.ones(2),
transfers=False):

self.β, self.σ, self.γ = β, σ, γ
self.π, self.G, self.Θ, self.transfers = π, G, Θ, transfers

Utility function
def U(self, c, n):

σ = self.σ
if σ == 1.:

U = np.log(c)
else:

U = (c**(1 - σ) - 1) / (1 - σ)
return U - n**(1 + self.γ) / (1 + self.γ)

Derivatives of utility function
def Uc(self, c, n):

return c**(-self.σ)

def Ucc(self, c, n):
return -self.σ * c**(-self.σ - 1)

def Un(self, c, n):
return -n**self.γ

def Unn(self, c, n):
return -self.γ * n**(self.γ - 1)

7.2.1 First and Second Moments

We’ll want first and second moments of some key random variables below.
The following code computes these moments; the code is recycled from Fluctuating Interest Rates Deliver Fiscal Insurance.

def mean(x, s):
'''Returns mean for x given initial state'''
x = np.array(x)
return x @ u.π[s]

def variance(x, s):
x = np.array(x)
return x**2 @ u.π[s] - mean(x, s)**2

def covariance(x, y, s):
x, y = np.array(x), np.array(y)
return x * y @ u.π[s] - mean(x, s) * mean(y, s)

7.2. The Economy 165

Advanced Dynamic Programming

7.3 Long Simulation

To generate a long simulation we use the following code.
We begin by showing the code that we used in earlier lectures on the AMSS model.
Here it is

import numpy as np
from scipy.optimize import root
from quantecon import MarkovChain

class SequentialAllocation:

'''
Class that takes CESutility or BGPutility object as input returns
planner's allocation as a function of the multiplier on the
implementability constraint μ.
'''

def __init__(self, model):

Initialize from model object attributes
self.β, self.π, self.G = model.β, model.π, model.G
self.mc, self.Θ = MarkovChain(self.π), model.Θ
self.S = len(model.π) # Number of states
self.model = model

Find the first best allocation
self.find_first_best()

def find_first_best(self):
'''
Find the first best allocation
'''
model = self.model
S, Θ, G = self.S, self.Θ, self.G
Uc, Un = model.Uc, model.Un

def res(z):
c = z[:S]
n = z[S:]
return np.hstack([Θ * Uc(c, n) + Un(c, n), Θ * n - c - G])

res = root(res, np.full(2 * S, 0.5))

if not res.success:
raise Exception('Could not find first best')

self.cFB = res.x[:S]
self.nFB = res.x[S:]

Multiplier on the resource constraint
self.ΞFB = Uc(self.cFB, self.nFB)
self.zFB = np.hstack([self.cFB, self.nFB, self.ΞFB])

(continues on next page)

166 Chapter 7. Fiscal Risk and Government Debt

Advanced Dynamic Programming

(continued from previous page)

def time1_allocation(self, μ):
'''
Computes optimal allocation for time t >= 1 for a given μ
'''
model = self.model
S, Θ, G = self.S, self.Θ, self.G
Uc, Ucc, Un, Unn = model.Uc, model.Ucc, model.Un, model.Unn

def FOC(z):
c = z[:S]
n = z[S:2 * S]
Ξ = z[2 * S:]
FOC of c
return np.hstack([Uc(c, n) - μ * (Ucc(c, n) * c + Uc(c, n)) - Ξ,

Un(c, n) - μ * (Unn(c, n) * n + Un(c, n)) \
+ Θ * Ξ, # FOC of n
Θ * n - c - G])

Find the root of the first-order condition
res = root(FOC, self.zFB)
if not res.success:

raise Exception('Could not find LS allocation.')
z = res.x
c, n, Ξ = z[:S], z[S:2 * S], z[2 * S:]

Compute x
I = Uc(c, n) * c + Un(c, n) * n
x = np.linalg.solve(np.eye(S) - self.β * self.π, I)

return c, n, x, Ξ

def time0_allocation(self, B_, s_0):
'''
Finds the optimal allocation given initial government debt B_ and
state s_0
'''
model, π, Θ, G, β = self.model, self.π, self.Θ, self.G, self.β
Uc, Ucc, Un, Unn = model.Uc, model.Ucc, model.Un, model.Unn

First order conditions of planner's problem
def FOC(z):

μ, c, n, Ξ = z
xprime = self.time1_allocation(μ)[2]
return np.hstack([Uc(c, n) * (c - B_) + Un(c, n) * n + β * π[s_0]

@ xprime,
Uc(c, n) - μ * (Ucc(c, n)

* (c - B_) + Uc(c, n)) - Ξ,
Un(c, n) - μ * (Unn(c, n) * n

+ Un(c, n)) + Θ[s_0] * Ξ,
(Θ * n - c - G)[s_0]])

Find root
res = root(FOC, np.array(

[0, self.cFB[s_0], self.nFB[s_0], self.ΞFB[s_0]]))
if not res.success:

raise Exception('Could not find time 0 LS allocation.')

(continues on next page)

7.3. Long Simulation 167

Advanced Dynamic Programming

(continued from previous page)

return res.x

def time1_value(self, μ):
'''
Find the value associated with multiplier μ
'''
c, n, x, Ξ = self.time1_allocation(μ)
U = self.model.U(c, n)
V = np.linalg.solve(np.eye(self.S) - self.β * self.π, U)
return c, n, x, V

def Τ(self, c, n):
'''
Computes Τ given c, n
'''
model = self.model
Uc, Un = model.Uc(c, n), model.Un(c, n)

return 1 + Un / (self.Θ * Uc)

def simulate(self, B_, s_0, T, sHist=None):
'''
Simulates planners policies for T periods
'''
model, π, β = self.model, self.π, self.β
Uc = model.Uc

if sHist is None:
sHist = self.mc.simulate(T, s_0)

cHist, nHist, Bhist, ΤHist, μHist = np.zeros((5, T))
RHist = np.zeros(T - 1)

Time 0
μ, cHist[0], nHist[0], _ = self.time0_allocation(B_, s_0)
ΤHist[0] = self.Τ(cHist[0], nHist[0])[s_0]
Bhist[0] = B_
μHist[0] = μ

Time 1 onward
for t in range(1, T):

c, n, x, Ξ = self.time1_allocation(μ)
Τ = self.Τ(c, n)
u_c = Uc(c, n)
s = sHist[t]
Eu_c = π[sHist[t - 1]] @ u_c
cHist[t], nHist[t], Bhist[t], ΤHist[t] = c[s], n[s], x[s] / u_c[s], \

Τ[s]
RHist[t - 1] = Uc(cHist[t - 1], nHist[t - 1]) / (β * Eu_c)
μHist[t] = μ

return [cHist, nHist, Bhist, ΤHist, sHist, μHist, RHist]

import numpy as np

(continues on next page)

168 Chapter 7. Fiscal Risk and Government Debt

Advanced Dynamic Programming

(continued from previous page)

from scipy.optimize import fmin_slsqp
from scipy.optimize import root
from quantecon import MarkovChain

class RecursiveAllocationAMSS:

def __init__(self, model, μgrid, tol_diff=1e-7, tol=1e-7):

self.β, self.π, self.G = model.β, model.π, model.G
self.mc, self.S = MarkovChain(self.π), len(model.π) # Number of states
self.Θ, self.model, self.μgrid = model.Θ, model, μgrid
self.tol_diff, self.tol = tol_diff, tol

Find the first best allocation
self.solve_time1_bellman()
self.T.time_0 = True # Bellman equation now solves time 0 problem

def solve_time1_bellman(self):
'''
Solve the time 1 Bellman equation for calibration model and
initial grid μgrid0
'''
model, μgrid0 = self.model, self.μgrid
π = model.π
S = len(model.π)

First get initial fit from Lucas Stokey solution.
Need to change things to be ex ante
pp = SequentialAllocation(model)
interp = interpolator_factory(2, None)

def incomplete_allocation(μ_, s_):
c, n, x, V = pp.time1_value(μ_)
return c, n, π[s_] @ x, π[s_] @ V

cf, nf, xgrid, Vf, xprimef = [], [], [], [], []
for s_ in range(S):

c, n, x, V = zip(*map(lambda μ: incomplete_allocation(μ, s_), μgrid0))
c, n = np.vstack(c).T, np.vstack(n).T
x, V = np.hstack(x), np.hstack(V)
xprimes = np.vstack([x] * S)
cf.append(interp(x, c))
nf.append(interp(x, n))
Vf.append(interp(x, V))
xgrid.append(x)
xprimef.append(interp(x, xprimes))

cf, nf, xprimef = fun_vstack(cf), fun_vstack(nf), fun_vstack(xprimef)
Vf = fun_hstack(Vf)
policies = [cf, nf, xprimef]

Create xgrid
x = np.vstack(xgrid).T
xbar = [x.min(0).max(), x.max(0).min()]
xgrid = np.linspace(xbar[0], xbar[1], len(μgrid0))
self.xgrid = xgrid

(continues on next page)

7.3. Long Simulation 169

Advanced Dynamic Programming

(continued from previous page)

Now iterate on Bellman equation
T = BellmanEquation(model, xgrid, policies, tol=self.tol)
diff = 1
while diff > self.tol_diff:

PF = T(Vf)

Vfnew, policies = self.fit_policy_function(PF)
diff = np.abs((Vf(xgrid) - Vfnew(xgrid)) / Vf(xgrid)).max()

print(diff)
Vf = Vfnew

Store value function policies and Bellman Equations
self.Vf = Vf
self.policies = policies
self.T = T

def fit_policy_function(self, PF):
'''
Fits the policy functions
'''
S, xgrid = len(self.π), self.xgrid
interp = interpolator_factory(3, 0)
cf, nf, xprimef, Tf, Vf = [], [], [], [], []
for s_ in range(S):

PFvec = np.vstack([PF(x, s_) for x in self.xgrid]).T
Vf.append(interp(xgrid, PFvec[0, :]))
cf.append(interp(xgrid, PFvec[1:1 + S]))
nf.append(interp(xgrid, PFvec[1 + S:1 + 2 * S]))
xprimef.append(interp(xgrid, PFvec[1 + 2 * S:1 + 3 * S]))
Tf.append(interp(xgrid, PFvec[1 + 3 * S:]))

policies = fun_vstack(cf), fun_vstack(
nf), fun_vstack(xprimef), fun_vstack(Tf)

Vf = fun_hstack(Vf)
return Vf, policies

def Τ(self, c, n):
'''
Computes Τ given c and n
'''
model = self.model
Uc, Un = model.Uc(c, n), model.Un(c, n)

return 1 + Un / (self.Θ * Uc)

def time0_allocation(self, B_, s0):
'''
Finds the optimal allocation given initial government debt B_ and
state s_0
'''
PF = self.T(self.Vf)
z0 = PF(B_, s0)
c0, n0, xprime0, T0 = z0[1:]
return c0, n0, xprime0, T0

def simulate(self, B_, s_0, T, sHist=None):

(continues on next page)

170 Chapter 7. Fiscal Risk and Government Debt

Advanced Dynamic Programming

(continued from previous page)

'''
Simulates planners policies for T periods
'''
model, π = self.model, self.π
Uc = model.Uc
cf, nf, xprimef, Tf = self.policies

if sHist is None:
sHist = simulate_markov(π, s_0, T)

cHist, nHist, Bhist, xHist, ΤHist, THist, μHist = np.zeros((7, T))
Time 0
cHist[0], nHist[0], xHist[0], THist[0] = self.time0_allocation(B_, s_0)
ΤHist[0] = self.Τ(cHist[0], nHist[0])[s_0]
Bhist[0] = B_
μHist[0] = self.Vf[s_0](xHist[0])

Time 1 onward
for t in range(1, T):

s_, x, s = sHist[t - 1], xHist[t - 1], sHist[t]
c, n, xprime, T = cf[s_, :](x), nf[s_, :](

x), xprimef[s_, :](x), Tf[s_, :](x)

Τ = self.Τ(c, n)[s]
u_c = Uc(c, n)
Eu_c = π[s_, :] @ u_c

μHist[t] = self.Vf[s](xprime[s])

cHist[t], nHist[t], Bhist[t], ΤHist[t] = c[s], n[s], x / Eu_c, Τ
xHist[t], THist[t] = xprime[s], T[s]

return [cHist, nHist, Bhist, ΤHist, THist, μHist, sHist, xHist]

class BellmanEquation:
'''
Bellman equation for the continuation of the Lucas-Stokey Problem
'''

def __init__(self, model, xgrid, policies0, tol, maxiter=1000):

self.β, self.π, self.G = model.β, model.π, model.G
self.S = len(model.π) # Number of states
self.Θ, self.model, self.tol = model.Θ, model, tol
self.maxiter = maxiter

self.xbar = [min(xgrid), max(xgrid)]
self.time_0 = False

self.z0 = {}
cf, nf, xprimef = policies0

for s_ in range(self.S):
for x in xgrid:

self.z0[x, s_] = np.hstack([cf[s_, :](x),
nf[s_, :](x),

(continues on next page)

7.3. Long Simulation 171

Advanced Dynamic Programming

(continued from previous page)

xprimef[s_, :](x),
np.zeros(self.S)])

self.find_first_best()

def find_first_best(self):
'''
Find the first best allocation
'''
model = self.model
S, Θ, Uc, Un, G = self.S, self.Θ, model.Uc, model.Un, self.G

def res(z):
c = z[:S]
n = z[S:]
return np.hstack([Θ * Uc(c, n) + Un(c, n), Θ * n - c - G])

res = root(res, np.full(2 * S, 0.5))
if not res.success:

raise Exception('Could not find first best')

self.cFB = res.x[:S]
self.nFB = res.x[S:]
IFB = Uc(self.cFB, self.nFB) * self.cFB + \

Un(self.cFB, self.nFB) * self.nFB

self.xFB = np.linalg.solve(np.eye(S) - self.β * self.π, IFB)

self.zFB = {}
for s in range(S):

self.zFB[s] = np.hstack(
[self.cFB[s], self.nFB[s], self.π[s] @ self.xFB, 0.])

def __call__(self, Vf):
'''
Given continuation value function next period return value function this
period return T(V) and optimal policies
'''
if not self.time_0:

def PF(x, s): return self.get_policies_time1(x, s, Vf)
else:

def PF(B_, s0): return self.get_policies_time0(B_, s0, Vf)
return PF

def get_policies_time1(self, x, s_, Vf):
'''
Finds the optimal policies
'''
model, β, Θ, G, S, π = self.model, self.β, self.Θ, self.G, self.S, self.π
U, Uc, Un = model.U, model.Uc, model.Un

def objf(z):
c, n, xprime = z[:S], z[S:2 * S], z[2 * S:3 * S]

Vprime = np.empty(S)
for s in range(S):

(continues on next page)

172 Chapter 7. Fiscal Risk and Government Debt

Advanced Dynamic Programming

(continued from previous page)

Vprime[s] = Vf[s](xprime[s])

return -π[s_] @ (U(c, n) + β * Vprime)

def objf_prime(x):

epsilon = 1e-7
x0 = np.asfarray(x)
f0 = np.atleast_1d(objf(x0))
jac = np.zeros([len(x0), len(f0)])
dx = np.zeros(len(x0))
for i in range(len(x0)):

dx[i] = epsilon
jac[i] = (objf(x0+dx) - f0)/epsilon
dx[i] = 0.0

return jac.transpose()

def cons(z):
c, n, xprime, T = z[:S], z[S:2 * S], z[2 * S:3 * S], z[3 * S:]
u_c = Uc(c, n)
Eu_c = π[s_] @ u_c
return np.hstack([

x * u_c / Eu_c - u_c * (c - T) - Un(c, n) * n - β * xprime,
Θ * n - c - G])

if model.transfers:
bounds = [(0., 100)] * S + [(0., 100)] * S + \

[self.xbar] * S + [(0., 100.)] * S
else:

bounds = [(0., 100)] * S + [(0., 100)] * S + \
[self.xbar] * S + [(0., 0.)] * S

out, fx, _, imode, smode = fmin_slsqp(objf, self.z0[x, s_],
f_eqcons=cons, bounds=bounds,
fprime=objf_prime, full_output=True,
iprint=0, acc=self.tol, iter=self.

↪maxiter)

if imode > 0:
raise Exception(smode)

self.z0[x, s_] = out
return np.hstack([-fx, out])

def get_policies_time0(self, B_, s0, Vf):
'''
Finds the optimal policies
'''
model, β, Θ, G = self.model, self.β, self.Θ, self.G
U, Uc, Un = model.U, model.Uc, model.Un

def objf(z):
c, n, xprime = z[:-1]

return -(U(c, n) + β * Vf[s0](xprime))

(continues on next page)

7.3. Long Simulation 173

Advanced Dynamic Programming

(continued from previous page)

def cons(z):
c, n, xprime, T = z
return np.hstack([

-Uc(c, n) * (c - B_ - T) - Un(c, n) * n - β * xprime,
(Θ * n - c - G)[s0]])

if model.transfers:
bounds = [(0., 100), (0., 100), self.xbar, (0., 100.)]

else:
bounds = [(0., 100), (0., 100), self.xbar, (0., 0.)]

out, fx, _, imode, smode = fmin_slsqp(objf, self.zFB[s0], f_eqcons=cons,
bounds=bounds, full_output=True,
iprint=0)

if imode > 0:
raise Exception(smode)

return np.hstack([-fx, out])

import numpy as np
from scipy.interpolate import UnivariateSpline

class interpolate_wrapper:

def __init__(self, F):
self.F = F

def __getitem__(self, index):
return interpolate_wrapper(np.asarray(self.F[index]))

def reshape(self, *args):
self.F = self.F.reshape(*args)
return self

def transpose(self):
self.F = self.F.transpose()

def __len__(self):
return len(self.F)

def __call__(self, xvec):
x = np.atleast_1d(xvec)
shape = self.F.shape
if len(x) == 1:

fhat = np.hstack([f(x) for f in self.F.flatten()])
return fhat.reshape(shape)

else:
fhat = np.vstack([f(x) for f in self.F.flatten()])
return fhat.reshape(np.hstack((shape, len(x))))

class interpolator_factory:

def __init__(self, k, s):

(continues on next page)

174 Chapter 7. Fiscal Risk and Government Debt

Advanced Dynamic Programming

(continued from previous page)

self.k, self.s = k, s

def __call__(self, xgrid, Fs):
shape, m = Fs.shape[:-1], Fs.shape[-1]
Fs = Fs.reshape((-1, m))
F = []
xgrid = np.sort(xgrid) # Sort xgrid
for Fhat in Fs:

F.append(UnivariateSpline(xgrid, Fhat, k=self.k, s=self.s))
return interpolate_wrapper(np.array(F).reshape(shape))

def fun_vstack(fun_list):

Fs = [IW.F for IW in fun_list]
return interpolate_wrapper(np.vstack(Fs))

def fun_hstack(fun_list):

Fs = [IW.F for IW in fun_list]
return interpolate_wrapper(np.hstack(Fs))

def simulate_markov(π, s_0, T):

sHist = np.empty(T, dtype=int)
sHist[0] = s_0
S = len(π)
for t in range(1, T):

sHist[t] = np.random.choice(np.arange(S), p=π[sHist[t - 1]])

return sHist

Next, we show the code that we use to generate a very long simulation starting from initial government debt equal to −.5.
Here is a graph of a long simulation of 102000 periods.

μ_grid = np.linspace(-0.09, 0.1, 100)

log_example = CRRAutility(π=np.full((3, 3), 1 / 3),
G=np.array([0.1, 0.2, .3]),
Θ=np.ones(3))

log_example.transfers = True # Government can use transfers
log_sequential = SequentialAllocation(log_example) # Solve sequential problem
log_bellman = RecursiveAllocationAMSS(log_example, μ_grid,

tol=1e-12, tol_diff=1e-10)

T = 102000 # Set T to 102000 periods

sim_seq_long = log_sequential.simulate(0.5, 0, T)
sHist_long = sim_seq_long[-3]
sim_bel_long = log_bellman.simulate(0.5, 0, T, sHist_long)

(continues on next page)

7.3. Long Simulation 175

Advanced Dynamic Programming

(continued from previous page)

titles = ['Government Debt', 'Tax Rate']

fig, axes = plt.subplots(2, 1, figsize=(10, 8))

for ax, title, id in zip(axes.flatten(), titles, [2, 3]):
ax.plot(sim_seq_long[id], '-k', sim_bel_long[id], '-.b', alpha=0.5)
ax.set(title=title)
ax.grid()

axes[0].legend(('Complete Markets', 'Incomplete Markets'))
plt.tight_layout()
plt.show()

/home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages/scipy/optimize/
↪_optimize.py:404: RuntimeWarning: Values in x were outside bounds during a␣
↪minimize step, clipping to bounds
warnings.warn("Values in x were outside bounds during a "

/tmp/ipykernel_2277/108196118.py:24: RuntimeWarning: divide by zero encountered in␣
↪reciprocal
U = (c**(1 - σ) - 1) / (1 - σ)

/tmp/ipykernel_2277/108196118.py:29: RuntimeWarning: divide by zero encountered in␣
↪power
return c**(-self.σ)

/tmp/ipykernel_2277/1277371586.py:249: RuntimeWarning: invalid value encountered␣
↪in divide
x * u_c / Eu_c - u_c * (c - T) - Un(c, n) * n - β * xprime,

/tmp/ipykernel_2277/1277371586.py:249: RuntimeWarning: invalid value encountered␣
↪in multiply
x * u_c / Eu_c - u_c * (c - T) - Un(c, n) * n - β * xprime,

0.038266353387659546

0.0015144378246632448

0.0013387575049931865

0.0011833202400662248

0.0010600307116134505

0.0009506620324908642

0.0008518776517238551

0.0007625857031042564

176 Chapter 7. Fiscal Risk and Government Debt

Advanced Dynamic Programming

0.0006819563061669217

0.0006094002927240671

0.0005443007356805235

0.00048599500343956094

0.0004338395935928358

0.00038722730865154364

0.00034559541217657187

0.00030842870645340995

0.00027525901875688697

0.0002456631291987257

0.00021925988533911457

0.0001957069581927878

0.00017469751641633328

0.00015595697131045533

0.00013923987965580473

0.0001243270476244632

0.00011102285954170156

9.915283206080047e-05

8.856139177373994e-05

7.910986485356134e-05

7.067466534026614e-05

7.3. Long Simulation 177

Advanced Dynamic Programming

6.314566737649043e-05

5.6424746008715835e-05

5.04244714230645e-05

4.5066942129829506e-05

4.028274354582181e-05

3.601001917066026e-05

3.219364287744318e-05

2.878448158073308e-05

2.5738738366349524e-05

2.3017369974638877e-05

2.0585562530972924e-05

1.8412273759209572e-05

1.6470096733078585e-05

1.4734148603737835e-05

1.3182214255360329e-05

1.1794654716176686e-05

1.0553942898779478e-05

9.444436197515114e-06

8.452171093491432e-06

7.564681603048501e-06

6.770836606096674e-06

178 Chapter 7. Fiscal Risk and Government Debt

Advanced Dynamic Programming

6.060699172057158e-06

5.4253876343226e-06

4.856977544060761e-06

4.348382732427091e-06

3.893276456302588e-06

3.4860028420224977e-06

3.1215110784890745e-06

2.7952840260155024e-06

2.503284254157189e-06

2.241904747465382e-06

2.0079209145832687e-06

1.7984472260187192e-06

1.610904141295967e-06

1.4429883256895489e-06

1.2926354365994746e-06

1.1580011940576491e-06

1.0374362190402233e-06

9.294651286343194e-07

8.327660623755013e-07

7.461585686381671e-07

6.68586648784756e-07

7.3. Long Simulation 179

Advanced Dynamic Programming

5.991017296865946e-07

5.368606502407216e-07

4.811037017633464e-07

4.3115434615062044e-07

3.8640500348483447e-07

3.4631274740294855e-07

3.1039146715661056e-07

2.782060642970499e-07

2.493665449692665e-07

2.235241683944158e-07

2.0036660045892633e-07

1.796140357496926e-07

1.610161234596195e-07

1.4434845857135709e-07

1.29410194199688e-07

1.1602140686642469e-07

1.04020962175412e-07

9.326451087350253e-08

8.362279520562034e-08

7.49799979528415e-08

6.723237810210067e-08

180 Chapter 7. Fiscal Risk and Government Debt

Advanced Dynamic Programming

6.028699653820159e-08

5.4060588066801066e-08

4.847855517381241e-08

4.347405660607874e-08

3.898720608840536e-08

3.496434157686767e-08

3.135737680533792e-08

2.8123222131646282e-08

2.5223262308472423e-08

2.2622892571432625e-08

2.0291098813063476e-08

1.820008555543109e-08

1.6324938418135388e-08

1.4643330672610771e-08

1.3135245110419445e-08

1.178274355586975e-08

1.0569743803546048e-08

9.48183058751907e-09

8.506079544395937e-09

7.630907318911004e-09

6.845926774203295e-09

7.3. Long Simulation 181

Advanced Dynamic Programming

6.141826797773109e-09

5.510259068441386e-09

4.943738281315066e-09

4.435554859709816e-09

3.979736766026741e-09

3.5708317622814044e-09

3.2040044801866767e-09

2.874916539533131e-09

2.579680212253616e-09

2.3148068175021918e-09

2.077170148801081e-09

1.8639635474165993e-09

1.6726726276855955e-09

1.5010414936033808e-09

1.3470449992327086e-09

1.2088698423920761e-09

1.0848882197883804e-09

9.736395405805598e-10

8.738135346705384e-10

7.842367703299733e-10

7.03855297579472e-10

182 Chapter 7. Fiscal Risk and Government Debt

Advanced Dynamic Programming

6.317225605423774e-10

5.669925787732949e-10

5.089032105148693e-10

4.5677367318159076e-10

4.0999013116379334e-10

3.680044560697966e-10

3.3032415368561477e-10

2.96506010211222e-10

2.6615516244191936e-10

2.389139399385772e-10

2.144649644252697e-10

1.9252092177853976e-10

1.7282471699749249e-10

1.551454449875162e-10

1.3927730577138407e-10

1.2503449048385917e-10

1.1224916676355658e-10

1.0077318342152794e-10

9.047094182757221e-11

7.3. Long Simulation 183

Advanced Dynamic Programming

The long simulation apparently indicates eventual convergence to an ergodic distribution.
It takes about 1000 periods to reach the ergodic distribution – an outcome that is forecast by approximations to rates of
convergence that appear in BEGS [BEGS17] and that we discuss in Fluctuating Interest Rates Deliver Fiscal Insurance.
Let’s discard the first 2000 observations of the simulation and construct the histogram of the par value of government
debt.
We obtain the following graph for the histogram of the last 100,000 observations on the par value of government debt.
The black vertical line denotes the sample mean for the last 100,000 observations included in the histogram; the green
vertical line denotes the value of ℬ∗

𝐸𝑢𝑐
, associated with a sample from our approximation to the ergodic distribution where

ℬ∗ is a regression coefficient to be described below; the red vertical line denotes an approximation by [BEGS17] to
the mean of the ergodic distribution that can be computed before the ergodic distribution has been approximated, as
described below.
Before moving on to discuss the histogram and the vertical lines approximating the ergodic mean of government debt in
more detail, the following graphs show government debt and taxes early in the simulation, for periods 1-100 and 101 to
200 respectively.

titles = ['Government Debt', 'Tax Rate']

fig, axes = plt.subplots(4, 1, figsize=(10, 15))

for i, id in enumerate([2, 3]):

(continues on next page)

184 Chapter 7. Fiscal Risk and Government Debt

Advanced Dynamic Programming

7.3. Long Simulation 185

Advanced Dynamic Programming

186 Chapter 7. Fiscal Risk and Government Debt

Advanced Dynamic Programming

(continued from previous page)

axes[i].plot(sim_seq_long[id][:99], '-k', sim_bel_long[id][:99],
'-.b', alpha=0.5)

axes[i+2].plot(range(100, 199), sim_seq_long[id][100:199], '-k',
range(100, 199), sim_bel_long[id][100:199], '-.b',
alpha=0.5)

axes[i].set(title=titles[i])
axes[i+2].set(title=titles[i])
axes[i].grid()
axes[i+2].grid()

axes[0].legend(('Complete Markets', 'Incomplete Markets'))
plt.tight_layout()
plt.show()

7.3. Long Simulation 187

Advanced Dynamic Programming

188 Chapter 7. Fiscal Risk and Government Debt

Advanced Dynamic Programming

7.3. Long Simulation 189

Advanced Dynamic Programming

For the short samples early in our simulated sample of 102,000 observations, fluctuations in government debt and the
tax rate conceal the weak but inexorable force that the Ramsey planner puts into both series driving them toward ergodic
marginal distributions that are far from these early observations

• early observations are more influenced by the initial value of the par value of government debt than by the ergodic
mean of the par value of government debt

• much later observations are more influenced by the ergodic mean and are independent of the par value of initial
government debt

7.4 Asymptotic Mean and Rate of Convergence

We apply the results of BEGS [BEGS17] to interpret
• the mean of the ergodic distribution of government debt
• the rate of convergence to the ergodic distribution from an arbitrary initial government debt

We begin by computing objects required by the theory of section III.i of BEGS [BEGS17].
As in Fiscal Insurance via Fluctuating Interest Rates, we recall that BEGS [BEGS17] used a particular notation to represent
what we can regard as their generalization of an AMSS model.
We introduce some of the [BEGS17] notation so that readers can quickly relate notation that appears in key BEGS
formulas to the notation that we have used in previous lectures here and here.
BEGS work with objects 𝐵𝑡, ℬ𝑡, ℛ𝑡, 𝒳𝑡 that are related to notation that we used in earlier lectures by

ℛ𝑡 = 𝑢𝑐,𝑡
𝑢𝑐,𝑡−1

𝑅𝑡−1 = 𝑢𝑐,𝑡
𝛽𝐸𝑡−1𝑢𝑐,𝑡

𝐵𝑡 = 𝑏𝑡+1(𝑠𝑡)
𝑅𝑡(𝑠𝑡)

𝑏𝑡(𝑠𝑡−1) = ℛ𝑡−1𝐵𝑡−1
ℬ𝑡 = 𝑢𝑐,𝑡𝐵𝑡 = (𝛽𝐸𝑡𝑢𝑐,𝑡+1)𝑏𝑡+1(𝑠𝑡)
𝒳𝑡 = 𝑢𝑐,𝑡[𝑔𝑡 − 𝜏𝑡𝑛𝑡]

BEGS [BEGS17] call 𝒳𝑡 the effective government deficit and ℬ𝑡 the effective government debt.
Equation (44) of [BEGS17] expresses the time 𝑡 state 𝑠 government budget constraint as

ℬ(𝑠) = ℛ𝜏(𝑠, 𝑠−)ℬ− + 𝒳𝜏(𝑠) (7.1)

where the dependence on 𝜏 is meant to remind us that these objects depend on the tax rate; 𝑠− is last period’s Markov
state.
BEGS interpret random variations in the right side of (7.1) as fiscal risks generated by

• interest-rate-driven fluctuations in time 𝑡 effective payments due on the government portfolio, namely,
ℛ𝜏(𝑠, 𝑠−)ℬ−, and

• fluctuations in the effective government deficit 𝒳𝑡

190 Chapter 7. Fiscal Risk and Government Debt

Advanced Dynamic Programming

7.4.1 Asymptotic Mean

BEGS give conditions under which the ergodic mean of ℬ𝑡 is approximated by

ℬ∗ = −cov∞(ℛt, 𝒳t)
var∞(ℛt)

(7.2)

where the superscript ∞ denotes a moment taken with respect to an ergodic distribution.
Formula (7.2) represents ℬ∗ as a regression coefficient of 𝒳𝑡 on ℛ𝑡 in the ergodic distribution.
Regression coefficient ℬ∗ solves a variance-minimization problem:

ℬ∗ = argminℬvar∞(ℛℬ + 𝒳) (7.3)

The minimand in criterion (7.3) measures fiscal risk associated with a given tax-debt policy that appears on the right side
of equation (7.1).
Expressing formula (7.2) in terms of our notation tells us that the ergodic mean of the par value 𝑏 of government debt in
the AMSS model should be approximately

̂𝑏 = ℬ∗

𝛽𝐸(𝐸𝑡𝑢𝑐,𝑡+1) = ℬ∗

𝛽𝐸(𝑢𝑐,𝑡+1) (7.4)

where mathematical expectations are taken with respect to the ergodic distribution.

7.4.2 Rate of Convergence

BEGS also derive the following approximation to the rate of convergence to ℬ∗ from an arbitrary initial condition.

𝐸𝑡(ℬ𝑡+1 − ℬ∗)
(ℬ𝑡 − ℬ∗) ≈ 1

1 + 𝛽2var∞(ℛ) (7.5)

(See the equation above equation (47) in BEGS [BEGS17])

7.4.3 More Advanced Topic

The remainder of this lecture is about technical material based on formulas from BEGS [BEGS17].
The topic involves interpreting and extending formula (7.3) for the ergodic mean ℬ∗.

7.4.4 Chicken and Egg

Notice how attributes of the ergodic distribution for ℬ𝑡 appear on the right side of formula (7.3) for approximating the
ergodic mean via ℬ∗.
Therefor, formula (7.3) is not useful for estimating the mean of the ergodic in advance of actually approximating the
ergodic distribution.

• we need to know the ergodic distribution to compute the right side of formula (7.3)
So the primary use of equation (7.3) is how it confirms that the ergodic distribution solves a fiscal-risk minimization
problem.
As an example, notice how we used the formula for the mean of ℬ in the ergodic distribution of the special AMSS
economy in Fiscal Insurance via Fluctuating Interest Rates

7.4. Asymptotic Mean and Rate of Convergence 191

Advanced Dynamic Programming

• first we computed the ergodic distribution using a reverse-engineering construction
• then we verified that ℬ∗ agrees with the mean of that distribution

7.4.5 Approximating the Ergodic Mean

BEGS also [BEGS17] propose an approximation to ℬ∗ that can be computed without first approximating the ergodic
distribution.
To construct the BEGS approximation toℬ∗, we just follow steps set forth on pages 648 - 650 of section III.D of [BEGS17]

• notation in BEGS might be confusing at first sight, so it is important to stare and digest before computing
• there are also some sign errors in the [BEGS17] text that we’ll want to correct here

Here is a step-by-step description of the BEGS [BEGS17] approximation procedure.

7.4.6 Step by Step

Step 1: For a given 𝜏 we compute a vector of values 𝑐𝜏(𝑠), 𝑠 = 1, 2, … , 𝑆 that satisfy

(1 − 𝜏)𝑐𝜏(𝑠)−𝜎 − (𝑐𝜏(𝑠) + 𝑔(𝑠))𝛾 = 0

This is a nonlinear equation to be solved for 𝑐𝜏(𝑠), 𝑠 = 1, … , 𝑆.
𝑆 = 3 in our case, but we’ll write code for a general integer 𝑆.
Typo alert: Please note that there is a sign error in equation (42) of BEGS [BEGS17] – it should be aminus rather than
a plus in the middle.

• We have made the appropriate correction in the above equation.
Step 2: Knowing 𝑐𝜏(𝑠), 𝑠 = 1, … , 𝑆 for a given 𝜏 , we want to compute the random variables

ℛ𝜏(𝑠) = 𝑐𝜏(𝑠)−𝜎

𝛽 ∑𝑆
𝑠′=1 𝑐𝜏(𝑠′)−𝜎𝜋(𝑠′)

and

𝒳𝜏(𝑠) = (𝑐𝜏(𝑠) + 𝑔(𝑠))1+𝛾 − 𝑐𝜏(𝑠)1−𝜎

each for 𝑠 = 1, … , 𝑆.
BEGS call ℛ𝜏(𝑠) the effective return on risk-free debt and they call 𝒳𝜏(𝑠) the effective government deficit.
Step 3: With the preceding objects in hand, for a given ℬ, we seek a 𝜏 that satisfies

ℬ = − 𝛽
1 − 𝛽 𝐸𝒳𝜏 ≡ − 𝛽

1 − 𝛽 ∑
𝑠

𝒳𝜏(𝑠)𝜋(𝑠)

This equation says that at a constant discount factor 𝛽, equivalent government debtℬ equals the present value of the mean
effective government surplus.
Another typo alert: there is a sign error in equation (46) of BEGS [BEGS17] –the left side should be multiplied by −1.

• We have made this correction in the above equation.

192 Chapter 7. Fiscal Risk and Government Debt

Advanced Dynamic Programming

For a given ℬ, let a 𝜏 that solves the above equation be called 𝜏(ℬ).
We’ll use a Python root solver to find a 𝜏 that solves this equation for a given ℬ.
We’ll use this function to induce a function 𝜏(ℬ).
Step 4: With a Python program that computes 𝜏(ℬ) in hand, next we write a Python function to compute the random
variable.

𝐽(ℬ)(𝑠) = ℛ𝜏(ℬ)(𝑠)ℬ + 𝒳𝜏(ℬ)(𝑠), 𝑠 = 1, … , 𝑆

Step 5: Now that we have a way to compute the random variable 𝐽(ℬ)(𝑠), 𝑠 = 1, … , 𝑆, via a composition of Python
functions, we can use the population variance function that we defined in the code above to construct a function var(𝐽(ℬ)).
We put var(𝐽(ℬ)) into a Python function minimizer and compute

ℬ∗ = argminℬvar(𝐽(ℬ))

Step 6: Next we take the minimizer ℬ∗ and the Python functions for computing means and variances and compute

rate = 1
1 + 𝛽2var(ℛ𝜏(ℬ∗))

Ultimate outputs of this string of calculations are two scalars

(ℬ∗, rate)

Step 7: Compute the divisor

𝑑𝑖𝑣 = 𝛽𝐸𝑢𝑐,𝑡+1

and then compute the mean of the par value of government debt in the AMSS model

�̂� = ℬ∗

𝑑𝑖𝑣
In the two-Markov-state AMSS economy in Fiscal Insurance via Fluctuating Interest Rates, 𝐸𝑡𝑢𝑐,𝑡+1 = 𝐸𝑢𝑐,𝑡+1 in the
ergodic distribution.
We have confirmed that this formula very accurately describes a constant par value of government debt that

• supports full fiscal insurance via fluctuating interest parameters, and
• is the limit of government debt as 𝑡 → +∞

In the three-Markov-state economy of this lecture, the par value of government debt fluctuates in a history-dependent
way even asymptotically.
In this economy, ̂𝑏 given by the above formula approximates the mean of the ergodic distribution of the par value of
government debt
so while the approximation circumvents the chicken and egg problem that surrounds

the much better approximation associated with the green vertical line, it does so by enlarging the approximation
error

• ̂𝑏 is represented by the red vertical line plotted in the histogram of the last 100,000 observations of our simulation
of the par value of government debt plotted above

• the approximation is fairly accurate but not perfect

7.4. Asymptotic Mean and Rate of Convergence 193

Advanced Dynamic Programming

7.4.7 Execution

Now let’s move on to compute things step by step.

Step 1

u = CRRAutility(π=np.full((3, 3), 1 / 3),
G=np.array([0.1, 0.2, .3]),
Θ=np.ones(3))

τ = 0.05 # Initial guess of τ (to displays calcs along the way)
S = len(u.G) # Number of states

def solve_c(c, τ, u):
return (1 - τ) * c**(-u.σ) - (c + u.G)**u.γ

.x returns the result from root
c = root(solve_c, np.ones(S), args=(τ, u)).x
c

array([0.93852387, 0.89231015, 0.84858872])

root(solve_c, np.ones(S), args=(τ, u))

message: The solution converged.
success: True
status: 1

fun: [5.618e-10 -4.769e-10 1.175e-11]
x: [9.385e-01 8.923e-01 8.486e-01]

nfev: 11
fjac: [[-9.999e-01 -4.954e-03 -1.261e-02]

[-5.156e-03 9.999e-01 1.610e-02]
[-1.253e-02 -1.616e-02 9.998e-01]]

r: [4.269e+00 8.685e-02 -6.301e-02 -4.713e+00 -7.433e-02
-5.508e+00]

qtf: [1.556e-08 1.283e-08 7.899e-11]

194 Chapter 7. Fiscal Risk and Government Debt

Advanced Dynamic Programming

Step 2

n = c + u.G # Compute labor supply

7.4.8 Note about Code

Remember that in our code 𝜋 is a 3 × 3 transition matrix.
But because we are studying an IID case, 𝜋 has identical rows and we need only to compute objects for one row of 𝜋.
This explains why at some places below we set 𝑠 = 0 just to pick off the first row of 𝜋.

7.4.9 Running the code

Let’s take the code out for a spin.
First, let’s compute ℛ and 𝒳 according to our formulas

def compute_R_X(τ, u, s):
c = root(solve_c, np.ones(S), args=(τ, u)).x # Solve for vector of c's
div = u.β * (u.Uc(c[0], n[0]) * u.π[s, 0] \

+ u.Uc(c[1], n[1]) * u.π[s, 1] \
+ u.Uc(c[2], n[2]) * u.π[s, 2])

R = c**(-u.σ) / (div)
X = (c + u.G)**(1 + u.γ) - c**(1 - u.σ)
return R, X

c**(-u.σ) @ u.π

array([1.25997521, 1.25997521, 1.25997521])

u.π

array([[0.33333333, 0.33333333, 0.33333333],
[0.33333333, 0.33333333, 0.33333333],
[0.33333333, 0.33333333, 0.33333333]])

We only want unconditional expectations because we are in an IID case.
So we’ll set 𝑠 = 0 and just pick off expectations associated with the first row of 𝜋

s = 0

R, X = compute_R_X(τ, u, s)

Let’s look at the random variables ℛ, 𝒳

R

array([1.00116313, 1.10755123, 1.22461897])

7.4. Asymptotic Mean and Rate of Convergence 195

Advanced Dynamic Programming

mean(R, s)

1.1111111111111112

X

array([0.05457803, 0.18259396, 0.33685546])

mean(X, s)

0.19134248445303795

X @ u.π

array([0.19134248, 0.19134248, 0.19134248])

Step 3

def solve_τ(τ, B, u, s):
R, X = compute_R_X(τ, u, s)
return ((u.β - 1) / u.β) * B - X @ u.π[s]

Note that 𝐵 is a scalar.
Let’s try out our method computing 𝜏

s = 0
B = 1.0

τ = root(solve_τ, .1, args=(B, u, s)).x[0] # Very sensitive to initial value
τ

0.2740159773695818

In the above cell, B is fixed at 1 and 𝜏 is to be computed as a function of B.
Note that 0.2 is the initial value for 𝜏 in the root-finding algorithm.

Step 4

def min_J(B, u, s):
Very sensitive to initial value of τ
τ = root(solve_τ, .5, args=(B, u, s)).x[0]
R, X = compute_R_X(τ, u, s)
return variance(R * B + X, s)

196 Chapter 7. Fiscal Risk and Government Debt

Advanced Dynamic Programming

min_J(B, u, s)

0.035564405653720765

Step 6

B_star = minimize(min_J, .5, args=(u, s)).x[0]
B_star

-1.199483167941158

n = c + u.G # Compute labor supply

div = u.β * (u.Uc(c[0], n[0]) * u.π[s, 0] \
+ u.Uc(c[1], n[1]) * u.π[s, 1] \
+ u.Uc(c[2], n[2]) * u.π[s, 2])

B_hat = B_star/div
B_hat

-1.0577661126390971

τ_star = root(solve_τ, 0.05, args=(B_star, u, s)).x[0]
τ_star

0.09572916798461703

R_star, X_star = compute_R_X(τ_star, u, s)
R_star, X_star

(array([0.9998398 , 1.10746593, 1.2260276]),
array([0.0020272 , 0.12464752, 0.27315299]))

rate = 1 / (1 + u.β**2 * variance(R_star, s))
rate

0.9931353432732218

root(solve_c, np.ones(S), args=(τ_star, u)).x

array([0.9264382 , 0.88027117, 0.83662635])

7.4. Asymptotic Mean and Rate of Convergence 197

Advanced Dynamic Programming

198 Chapter 7. Fiscal Risk and Government Debt

CHAPTER

EIGHT

COMPETITIVE EQUILIBRIA OF A MODEL OF CHANG

Contents

• Competitive Equilibria of a Model of Chang

– Overview

– Setting

– Competitive Equilibrium

– Inventory of Objects in Play

– Analysis

– Calculating all Promise-Value Pairs in CE

– Solving a Continuation Ramsey Planner’s Bellman Equation

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install polytope

8.1 Overview

This lecture describes how Chang [Cha98] analyzed competitive equilibria and a best competitive equilibrium called a
Ramsey plan.
He did this by

• characterizing a competitive equilibrium recursively in a way also employed in the dynamic Stackelberg problems
and Calvo model lectures to pose Stackelberg problems in linear economies, and then

• appropriately adapting an argument of Abreu, Pearce, and Stachetti [APS90] to describe key features of the set of
competitive equilibria

Roberto Chang [Cha98] chose a model of Calvo [Cal78] as a simple structure that conveys ideas that apply more broadly.
A textbook version of Chang’s model appears in chapter 25 of [LS18].
This lecture and Credible Government Policies in Chang Model can be viewed as more sophisticated and complete treat-
ments of the topics discussed in Ramsey plans, time inconsistency, sustainable plans.
Both this lecture and Credible Government Policies in Chang Model make extensive use of an idea to which we apply the
nickname dynamic programming squared.

199

Advanced Dynamic Programming

In dynamic programming squared problems there are typically two interrelated Bellman equations
• A Bellman equation for a set of agents or followers with value or value function 𝑣𝑎.
• A Bellman equation for a principal or Ramsey planner or Stackelberg leader with value or value function 𝑣𝑝 in
which 𝑣𝑎 appears as an argument.

We encountered problems with this structure in dynamic Stackelberg problems, optimal taxation with state-contingent debt,
and other lectures.
We’ll start with some standard imports:

import numpy as np
import polytope
import matplotlib.pyplot as plt
%matplotlib inline

`polytope` failed to import `cvxopt.glpk`.

will use `scipy.optimize.linprog`

8.1.1 The Setting

First, we introduce some notation.
For a sequence of scalars ⃗𝑧 ≡ {𝑧𝑡}∞

𝑡=0, let ⃗𝑧𝑡 = (𝑧0, … , 𝑧𝑡), ⃗𝑧𝑡 = (𝑧𝑡, 𝑧𝑡+1, …).
An infinitely lived representative agent and an infinitely lived government exist at dates 𝑡 = 0, 1, ….
The objects in play are

• an initial quantity 𝑀−1 of nominal money holdings

• a sequence of inverse money growth rates ℎ⃗ and an associated sequence of nominal money holdings �⃗�
• a sequence of values of money ⃗𝑞
• a sequence of real money holdings �⃗�
• a sequence of total tax collections ⃗𝑥
• a sequence of per capita rates of consumption ⃗𝑐
• a sequence of per capita incomes ⃗𝑦

A benevolent government chooses sequences (�⃗�, ℎ⃗, ⃗𝑥) subject to a sequence of budget constraints and other constraints
imposed by competitive equilibrium.
Given tax collection and price of money sequences, a representative household chooses sequences (⃗𝑐, �⃗�) of consumption
and real balances.
In competitive equilibrium, the price of money sequence ⃗𝑞 clears markets, thereby reconciling decisions of the government
and the representative household.
Chang adopts a version of a model that [Cal78] designed to exhibit time-inconsistency of a Ramsey policy in a simple
and transparent setting.
By influencing the representative household’s expectations, government actions at time 𝑡 affect components of household
utilities for periods 𝑠 before 𝑡.
When setting a path for monetary expansion rates, the government takes into account how the household’s anticipations
of the government’s future actions affect the household’s current decisions.

200 Chapter 8. Competitive Equilibria of a Model of Chang

Advanced Dynamic Programming

The ultimate source of time inconsistency is that a time 0 Ramsey planner takes these effects into account in designing a
plan of government actions for 𝑡 ≥ 0.

8.2 Setting

8.2.1 The Household’s Problem

A representative household faces a nonnegative value of money sequence ⃗𝑞 and sequences ⃗𝑦, ⃗𝑥 of income and total tax
collections, respectively.
The household chooses nonnegative sequences ⃗𝑐, �⃗� of consumption and nominal balances, respectively, to maximize

∞
∑
𝑡=0

𝛽𝑡 [𝑢(𝑐𝑡) + 𝑣(𝑞𝑡𝑀𝑡)] (8.1)

subject to

𝑞𝑡𝑀𝑡 ≤ 𝑦𝑡 + 𝑞𝑡𝑀𝑡−1 − 𝑐𝑡 − 𝑥𝑡 (8.2)

and

𝑞𝑡𝑀𝑡 ≤ �̄� (8.3)

Here 𝑞𝑡 is the reciprocal of the price level at 𝑡, which we can also call the value of money.
Chang [Cha98] assumes that

• 𝑢 ∶ ℝ+ → ℝ is twice continuously differentiable, strictly concave, and strictly increasing;
• 𝑣 ∶ ℝ+ → ℝ is twice continuously differentiable and strictly concave;
• 𝑢′(𝑐)𝑐→0 = lim𝑚→0 𝑣′(𝑚) = +∞;
• there is a finite level 𝑚 = 𝑚𝑓 such that 𝑣′(𝑚𝑓) = 0

The household carries real balances out of a period equal to 𝑚𝑡 = 𝑞𝑡𝑀𝑡.
Inequality (8.2) is the household’s time 𝑡 budget constraint.
It tells how real balances 𝑞𝑡𝑀𝑡 carried out of period 𝑡 depend on income, consumption, taxes, and real balances 𝑞𝑡𝑀𝑡−1
carried into the period.
Equation (8.3) imposes an exogenous upper bound �̄� on the household’s choice of real balances, where �̄� ≥ 𝑚𝑓 .

8.2.2 Government

The government chooses a sequence of inverse money growth rates with time 𝑡 component ℎ𝑡 ≡ 𝑀𝑡−1
𝑀𝑡

∈ Π ≡ [𝜋, 𝜋],
where 0 < 𝜋 < 1 < 1

𝛽 ≤ 𝜋.
The government faces a sequence of budget constraints with time 𝑡 component

−𝑥𝑡 = 𝑞𝑡(𝑀𝑡 − 𝑀𝑡−1)

which by using the definitions of 𝑚𝑡 and ℎ𝑡 can also be expressed as

−𝑥𝑡 = 𝑚𝑡(1 − ℎ𝑡) (8.4)

8.2. Setting 201

Advanced Dynamic Programming

The restrictions 𝑚𝑡 ∈ [0, �̄�] and ℎ𝑡 ∈ Π evidently imply that 𝑥𝑡 ∈ 𝑋 ≡ [(𝜋 − 1)�̄�, (𝜋 − 1)�̄�].
We define the set 𝐸 ≡ [0, �̄�] × Π × 𝑋, so that we require that (𝑚, ℎ, 𝑥) ∈ 𝐸.
To represent the idea that taxes are distorting, Chang makes the following assumption about outcomes for per capita
output:

𝑦𝑡 = 𝑓(𝑥𝑡), (8.5)

where 𝑓 ∶ ℝ → ℝ satisfies 𝑓(𝑥) > 0, is twice continuously differentiable, 𝑓″(𝑥) < 0, and 𝑓(𝑥) = 𝑓(−𝑥) for all 𝑥 ∈ ℝ,
so that subsidies and taxes are equally distorting.
Calvo’s and Chang’s purpose is not to model the causes of tax distortions in any detail but simply to summarize the outcome
of those distortions via the function 𝑓(𝑥).
A key part of the specification is that tax distortions are increasing in the absolute value of tax revenues.
Ramsey plan: A Ramsey plan is a competitive equilibrium that maximizes (8.1).
Within-period timing of decisions is as follows:

• first, the government chooses ℎ𝑡 and 𝑥𝑡;
• then given ⃗𝑞 and its expectations about future values of 𝑥 and 𝑦’s, the household chooses 𝑀𝑡 and therefore 𝑚𝑡
because 𝑚𝑡 = 𝑞𝑡𝑀𝑡;

• then output 𝑦𝑡 = 𝑓(𝑥𝑡) is realized;
• finally 𝑐𝑡 = 𝑦𝑡

This within-period timing confronts the government with choices framed by how the private sector wants to respond when
the government takes time 𝑡 actions that differ from what the private sector had expected.
This consideration will be important in lecture credible government policies when we study credible government policies.
The model is designed to focus on the intertemporal trade-offs between the welfare benefits of deflation and the welfare
costs associated with the high tax collections required to retire money at a rate that delivers deflation.
A benevolent time 0 government can promote utility generating increases in real balances only by imposing sufficiently
large distorting tax collections.
To promote the welfare increasing effects of high real balances, the government wants to induce gradual deflation.

8.2.3 Household’s Problem

Given 𝑀−1 and {𝑞𝑡}∞
𝑡=0, the household’s problem is

ℒ = max
⃗𝑐,�⃗�

min
�⃗�,�⃗�

∞
∑
𝑡=0

𝛽𝑡{𝑢(𝑐𝑡) + 𝑣(𝑀𝑡𝑞𝑡) + 𝜆𝑡[𝑦𝑡 − 𝑐𝑡 − 𝑥𝑡 + 𝑞𝑡𝑀𝑡−1 − 𝑞𝑡𝑀𝑡]

+ 𝜇𝑡[�̄� − 𝑞𝑡𝑀𝑡]}
First-order conditions with respect to 𝑐𝑡 and 𝑀𝑡, respectively, are

𝑢′(𝑐𝑡) = 𝜆𝑡
𝑞𝑡[𝑢′(𝑐𝑡) − 𝑣′(𝑀𝑡𝑞𝑡)] ≤ 𝛽𝑢′(𝑐𝑡+1)𝑞𝑡+1, = if 𝑀𝑡𝑞𝑡 < �̄�

The last equation expresses Karush-Kuhn-Tucker complementary slackness conditions (see here).
These insist that the inequality is an equality at an interior solution for 𝑀𝑡.

Using ℎ𝑡 = 𝑀𝑡−1
𝑀𝑡

and 𝑞𝑡 = 𝑚𝑡
𝑀𝑡

in these first-order conditions and rearranging implies

𝑚𝑡[𝑢′(𝑐𝑡) − 𝑣′(𝑚𝑡)] ≤ 𝛽𝑢′(𝑓(𝑥𝑡+1))𝑚𝑡+1ℎ𝑡+1, = if 𝑚𝑡 < �̄� (8.6)

202 Chapter 8. Competitive Equilibria of a Model of Chang

https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions

Advanced Dynamic Programming

Define the following key variable

𝜃𝑡+1 ≡ 𝑢′(𝑓(𝑥𝑡+1))𝑚𝑡+1ℎ𝑡+1 (8.7)

This is real money balances at time 𝑡 + 1 measured in units of marginal utility, which Chang refers to as ‘the marginal
utility of real balances’.
From the standpoint of the household at time 𝑡, equation (8.7) shows that 𝜃𝑡+1 intermediates the influences of (⃗𝑥𝑡+1, �⃗�𝑡+1)
on the household’s choice of real balances 𝑚𝑡.
By “intermediates” we mean that the future paths (⃗𝑥𝑡+1, �⃗�𝑡+1) influence 𝑚𝑡 entirely through their effects on the scalar
𝜃𝑡+1.
The observation that the one dimensional promised marginal utility of real balances 𝜃𝑡+1 functions in this way is an
important step in constructing a class of competitive equilibria that have a recursive representation.
A closely related observation pervaded the analysis of Stackelberg plans in lecture dynamic Stackelberg problems.

8.3 Competitive Equilibrium

Definition:
• A government policy is a pair of sequences (ℎ⃗, ⃗𝑥) where ℎ𝑡 ∈ Π ∀𝑡 ≥ 0.
• A price system is a nonnegative value of money sequence ⃗𝑞.
• An allocation is a triple of nonnegative sequences (⃗𝑐, �⃗�, ⃗𝑦).

It is required that time 𝑡 components (𝑚𝑡, 𝑥𝑡, ℎ𝑡) ∈ 𝐸.
Definition:
Given 𝑀−1, a government policy (ℎ⃗, ⃗𝑥), price system ⃗𝑞, and allocation (⃗𝑐, �⃗�, ⃗𝑦) are said to be a competitive equilibrium
if

• 𝑚𝑡 = 𝑞𝑡𝑀𝑡 and 𝑦𝑡 = 𝑓(𝑥𝑡).
• The government budget constraint is satisfied.
• Given ⃗𝑞, ⃗𝑥, ⃗𝑦, (⃗𝑐, �⃗�) solves the household’s problem.

8.4 Inventory of Objects in Play

Chang constructs the following objects
1. A set Ω of initial marginal utilities of money 𝜃0

• Let Ω denote the set of initial promised marginal utilities of money 𝜃0 associated with competitive equilibria.
• Chang exploits the fact that a competitive equilibrium consists of a first period outcome (ℎ0, 𝑚0, 𝑥0) and a
continuation competitive equilibrium with marginal utility of money 𝜃1 ∈ Ω.

2. Competitive equilibria that have a recursive representation
• A competitive equilibriumwith a recursive representation consists of an initial 𝜃0 and a four-tuple of functions

(ℎ, 𝑚, 𝑥, Ψ) mapping 𝜃 into this period’s (ℎ, 𝑚, 𝑥) and next period’s 𝜃, respectively.

8.3. Competitive Equilibrium 203

Advanced Dynamic Programming

• A competitive equilibrium can be represented recursively by iterating on

ℎ𝑡 = ℎ(𝜃𝑡)
𝑚𝑡 = 𝑚(𝜃𝑡)
𝑥𝑡 = 𝑥(𝜃𝑡)

𝜃𝑡+1 = Ψ(𝜃𝑡)

(8.8)

starting from 𝜃0

The range and domain of Ψ(⋅) are both Ω
3. A recursive representation of a Ramsey plan

• A recursive representation of a Ramsey plan is a recursive competitive equilibrium 𝜃0, (ℎ, 𝑚, 𝑥, Ψ) that,
among all recursive competitive equilibria, maximizes ∑∞

𝑡=0 𝛽𝑡 [𝑢(𝑐𝑡) + 𝑣(𝑞𝑡𝑀𝑡)].
• The Ramsey planner chooses 𝜃0, (ℎ, 𝑚, 𝑥, Ψ) from among the set of recursive competitive equilibria at time

0.
• Iterations on the function Ψ determine subsequent 𝜃𝑡’s that summarize the aspects of the continuation com-
petitive equilibria that influence the household’s decisions.

• At time 0, the Ramsey planner commits to this implied sequence {𝜃𝑡}∞
𝑡=0 and therefore to an associated

sequence of continuation competitive equilibria.
4. A characterization of time-inconsistency of a Ramsey plan

• Imagine that after a ‘revolution’ at time 𝑡 ≥ 1, a new Ramsey planner is given the opportunity to ignore history
and solve a brand new Ramsey plan.

• This new planner would want to reset the 𝜃𝑡 associated with the original Ramsey plan to 𝜃0.
• The incentive to reinitialize 𝜃𝑡 associated with this revolution experiment indicates the time-inconsistency of
the Ramsey plan.

• By resetting 𝜃 to 𝜃0, the new planner avoids the costs at time 𝑡 that the original Ramsey planner must pay
to reap the beneficial effects that the original Ramsey plan for 𝑠 ≥ 𝑡 had achieved via its influence on the
household’s decisions for 𝑠 = 0, … , 𝑡 − 1.

8.5 Analysis

A competitive equilibrium is a triple of sequences (�⃗�, ⃗𝑥, ℎ⃗) ∈ 𝐸∞ that satisfies (8.2), (8.3), and (8.6).
Chang works with a set of competitive equilibria defined as follows.
Definition: 𝐶𝐸 = {(�⃗�, ⃗𝑥, ℎ⃗) ∈ 𝐸∞ such that (8.2), (8.3), and (8.6) are satisfied }.
𝐶𝐸 is not empty because there exists a competitive equilibrium with ℎ𝑡 = 1 for all 𝑡 ≥ 1, namely, an equilibrium with
a constant money supply and constant price level.
Chang establishes that 𝐶𝐸 is also compact.
Chang makes the following key observation that combines ideas of Abreu, Pearce, and Stacchetti [APS90] with insights
of Kydland and Prescott [KP80].
Proposition: The continuation of a competitive equilibrium is a competitive equilibrium.
That is, (�⃗�, ⃗𝑥, ℎ⃗) ∈ 𝐶𝐸 implies that (�⃗�𝑡, ⃗𝑥𝑡, ℎ⃗𝑡) ∈ 𝐶𝐸 ∀ 𝑡 ≥ 1.
(Lecture dynamic Stackelberg problems also used a version of this insight)

204 Chapter 8. Competitive Equilibria of a Model of Chang

Advanced Dynamic Programming

We can now state that a Ramsey problem is to

max
(�⃗�,�⃗�,ℎ⃗)∈𝐸∞

∞
∑
𝑡=0

𝛽𝑡 [𝑢(𝑐𝑡) + 𝑣(𝑚𝑡)]

subject to restrictions (8.2), (8.3), and (8.6).
Evidently, associated with any competitive equilibrium (𝑚0, 𝑥0) is an implied value of 𝜃0 = 𝑢′(𝑓(𝑥0))(𝑚0 + 𝑥0).
To bring out a recursive structure inherent in the Ramsey problem, Chang defines the set

Ω = {𝜃 ∈ ℝ such that 𝜃 = 𝑢′(𝑓(𝑥0))(𝑚0 + 𝑥0) for some (�⃗�, ⃗𝑥, ℎ⃗) ∈ 𝐶𝐸}

Equation (8.6) inherits from the household’s Euler equation formoney holdings the property that the value of𝑚0 consistent
with the representative household’s choices depends on (ℎ⃗1, �⃗�1).
This dependence is captured in the definition above by making Ω be the set of first period values of 𝜃0 satisfying 𝜃0 =
𝑢′(𝑓(𝑥0))(𝑚0 + 𝑥0) for first period component (𝑚0, ℎ0) of competitive equilibrium sequences (�⃗�, ⃗𝑥, ℎ⃗).
Chang establishes that Ω is a nonempty and compact subset of ℝ+.
Next Chang advances:
Definition: Γ(𝜃) = {(�⃗�, ⃗𝑥, ℎ⃗) ∈ 𝐶𝐸|𝜃 = 𝑢′(𝑓(𝑥0))(𝑚0 + 𝑥0)}.
Thus, Γ(𝜃) is the set of competitive equilibrium sequences (�⃗�, ⃗𝑥, ℎ⃗) whose first period components (𝑚0, ℎ0) deliver the
prescribed value 𝜃 for first period marginal utility.
If we knew the sets Ω, Γ(𝜃), we could use the following two-step procedure to find at least the value of the Ramsey
outcome to the representative household

1. Find the indirect value function 𝑤(𝜃) defined as

𝑤(𝜃) = max
(�⃗�,�⃗�,ℎ⃗)∈Γ(𝜃)

∞
∑
𝑡=0

𝛽𝑡 [𝑢(𝑓(𝑥𝑡)) + 𝑣(𝑚𝑡)]

2. Compute the value of the Ramsey outcome by solving max𝜃∈Ω 𝑤(𝜃).
Thus, Chang states the following
Proposition:
𝑤(𝜃) satisfies the Bellman equation

𝑤(𝜃) = max
𝑥,𝑚,ℎ,𝜃′

{𝑢(𝑓(𝑥)) + 𝑣(𝑚) + 𝛽𝑤(𝜃′)} (8.9)

where maximization is subject to

(𝑚, 𝑥, ℎ) ∈ 𝐸 and 𝜃′ ∈ Ω (8.10)

and

𝜃 = 𝑢′(𝑓(𝑥))(𝑚 + 𝑥) (8.11)

and

−𝑥 = 𝑚(1 − ℎ) (8.12)

and

𝑚 ⋅ [𝑢′(𝑓(𝑥)) − 𝑣′(𝑚)] ≤ 𝛽𝜃′, = if 𝑚 < �̄� (8.13)

8.5. Analysis 205

Advanced Dynamic Programming

Before we use this proposition to recover a recursive representation of the Ramsey plan, note that the proposition relies
on knowing the set Ω.
To find Ω, Chang uses the insights of Kydland and Prescott [KP80] together with a method based on the Abreu, Pearce,
and Stacchetti [APS90] iteration to convergence on an operator 𝐵 that maps continuation values into values.
We want an operator that maps a continuation 𝜃 into a current 𝜃.
Chang lets 𝑄 be a nonempty, bounded subset of ℝ.
Elements of the set 𝑄 are taken to be candidate values for continuation marginal utilities.
Chang defines an operator

𝐵(𝑄) = 𝜃 ∈ ℝ such that there is (𝑚, 𝑥, ℎ, 𝜃′) ∈ 𝐸 × 𝑄

such that (8.11), (8.12), and (8.13) hold.
Thus, 𝐵(𝑄) is the set of first period 𝜃’s attainable with (𝑚, 𝑥, ℎ) ∈ 𝐸 and some 𝜃′ ∈ 𝑄.
Proposition:

1. 𝑄 ⊂ 𝐵(𝑄) implies 𝐵(𝑄) ⊂ Ω (‘self-generation’).
2. Ω = 𝐵(Ω) (‘factorization’).

The proposition characterizes Ω as the largest fixed point of 𝐵.
It is easy to establish that 𝐵(𝑄) is a monotone operator.
This property allows Chang to compute Ω as the limit of iterations on 𝐵 provided that iterations begin from a sufficiently
large initial set.

8.5.1 Some Useful Notation

Let ℎ⃗𝑡 = (ℎ0, ℎ1, … , ℎ𝑡) denote a history of inverse money creation rates with time 𝑡 component ℎ𝑡 ∈ Π.
A government strategy 𝜎 = {𝜎𝑡}∞

𝑡=0 is a 𝜎0 ∈ Π and for 𝑡 ≥ 1 a sequence of functions 𝜎𝑡 ∶ Π𝑡−1 → Π.
Chang restricts the government’s choice of strategies to the following space:

𝐶𝐸𝜋 = {ℎ⃗ ∈ Π∞ ∶ there is some (�⃗�, ⃗𝑥) such that (�⃗�, ⃗𝑥, ℎ⃗) ∈ 𝐶𝐸}

In words, 𝐶𝐸𝜋 is the set of money growth sequences consistent with the existence of competitive equilibria.
Chang observes that 𝐶𝐸𝜋 is nonempty and compact.

Definition: 𝜎 is said to be admissible if for all 𝑡 ≥ 1 and after any history ℎ⃗𝑡−1, the continuation ℎ⃗𝑡 implied by 𝜎 belongs
to 𝐶𝐸𝜋.
Admissibility of 𝜎 means that anticipated policy choices associated with 𝜎 are consistent with the existence of competitive
equilibria after each possible subsequent history.
After any history ℎ⃗𝑡−1, admissibility restricts the government’s choice in period 𝑡 to the set

𝐶𝐸0
𝜋 = {ℎ ∈ Π ∶ there is ℎ⃗ ∈ 𝐶𝐸𝜋 with ℎ = ℎ0}

In words, 𝐶𝐸0
𝜋 is the set of all first period money growth rates ℎ = ℎ0, each of which is consistent with the existence of

a sequence of money growth rates ℎ⃗ starting from ℎ0 in the initial period and for which a competitive equilibrium exists.
Remark: 𝐶𝐸0

𝜋 = {ℎ ∈ Π ∶ there is (𝑚, 𝜃′) ∈ [0, �̄�] × Ω such that 𝑚𝑢′[𝑓((ℎ − 1)𝑚) − 𝑣′(𝑚)] ≤
𝛽𝜃′ with equality if 𝑚 < �̄�}.

206 Chapter 8. Competitive Equilibria of a Model of Chang

Advanced Dynamic Programming

Definition: An allocation rule is a sequence of functions ⃗𝛼 = {𝛼𝑡}∞
𝑡=0 such that 𝛼𝑡 ∶ Π𝑡 → [0, �̄�] × 𝑋.

Thus, the time 𝑡 component of 𝛼𝑡(ℎ𝑡) is a pair of functions (𝑚𝑡(ℎ𝑡), 𝑥𝑡(ℎ𝑡)).
Definition: Given an admissible government strategy 𝜎, an allocation rule 𝛼 is called competitive if given any history
ℎ⃗𝑡−1 and ℎ𝑡 ∈ 𝐶𝐸0

𝜋, the continuations of 𝜎 and 𝛼 after (ℎ⃗𝑡−1, ℎ𝑡) induce a competitive equilibrium sequence.

8.5.2 Another Operator

At this point it is convenient to introduce another operator that can be used to compute a Ramsey plan.
For computing a Ramsey plan, this operator is wasteful because it works with a state vector that is bigger than necessary.
We introduce this operator because it helps to prepare the way for Chang’s operator called �̃�(𝑍) that we shall describe
in lecture credible government policies.
It is also useful because a fixed point of the operator to be defined here provides a good guess for an initial set from which
to initiate iterations on Chang’s set-to-set operator �̃�(𝑍) to be described in lecture credible government policies.
Let 𝑆 be the set of all pairs (𝑤, 𝜃) of competitive equilibrium values and associated initial marginal utilities.
Let 𝑊 be a bounded set of values in ℝ.
Let 𝑍 be a nonempty subset of 𝑊 × Ω.
Think of using pairs (𝑤′, 𝜃′) drawn from 𝑍 as candidate continuation value, 𝜃 pairs.
Define the operator

𝐷(𝑍) = {(𝑤, 𝜃) ∶ there is ℎ ∈ 𝐶𝐸0
𝜋

and a four-tuple (𝑚(ℎ), 𝑥(ℎ), 𝑤′(ℎ), 𝜃′(ℎ)) ∈ [0, �̄�] × 𝑋 × 𝑍
such that

𝑤 = 𝑢(𝑓(𝑥(ℎ))) + 𝑣(𝑚(ℎ)) + 𝛽𝑤′(ℎ) (8.14)

𝜃 = 𝑢′(𝑓(𝑥(ℎ)))(𝑚(ℎ) + 𝑥(ℎ)) (8.15)

𝑥(ℎ) = 𝑚(ℎ)(ℎ − 1) (8.16)

𝑚(ℎ)(𝑢′(𝑓(𝑥(ℎ))) − 𝑣′(𝑚(ℎ))) ≤ 𝛽𝜃′(ℎ) (8.17)

with equality if 𝑚(ℎ) < �̄�}
It is possible to establish.
Proposition:

1. If 𝑍 ⊂ 𝐷(𝑍), then 𝐷(𝑍) ⊂ 𝑆 (‘self-generation’).
2. 𝑆 = 𝐷(𝑆) (‘factorization’).

Proposition:
1. Monotonicity of 𝐷: 𝑍 ⊂ 𝑍′ implies 𝐷(𝑍) ⊂ 𝐷(𝑍′).
2. 𝑍 compact implies that 𝐷(𝑍) is compact.

8.5. Analysis 207

Advanced Dynamic Programming

It can be shown that 𝑆 is compact and that therefore there exists a (𝑤, 𝜃) pair within this set that attains the highest
possible value 𝑤.
This (𝑤, 𝜃) pair i associated with a Ramsey plan.
Further, we can compute 𝑆 by iterating to convergence on 𝐷 provided that one begins with a sufficiently large initial set
𝑆0.
As a very useful by-product, the algorithm that finds the largest fixed point 𝑆 = 𝐷(𝑆) also produces the Ramsey plan, its
value 𝑤, and the associated competitive equilibrium.

8.6 Calculating all Promise-Value Pairs in CE

Above we have defined the 𝐷(𝑍) operator as:

𝐷(𝑍) = {(𝑤, 𝜃) ∶ ∃ℎ ∈ 𝐶𝐸0
𝜋 and (𝑚(ℎ), 𝑥(ℎ), 𝑤′(ℎ), 𝜃′(ℎ)) ∈ [0, �̄�] × 𝑋 × 𝑍

such that

𝑤 = 𝑢(𝑓(𝑥(ℎ))) + 𝑣(𝑚(ℎ)) + 𝛽𝑤′(ℎ)

𝜃 = 𝑢′(𝑓(𝑥(ℎ)))(𝑚(ℎ) + 𝑥(ℎ))

𝑥(ℎ) = 𝑚(ℎ)(ℎ − 1)

𝑚(ℎ)(𝑢′(𝑓(𝑥(ℎ))) − 𝑣′(𝑚(ℎ))) ≤ 𝛽𝜃′(ℎ) (with equality if 𝑚(ℎ) < �̄�)}
We noted that the set 𝑆 can be found by iterating to convergence on 𝐷, provided that we start with a sufficiently large
initial set 𝑆0.
Our implementation builds on ideas in this notebook.
To find 𝑆 we use a numerical algorithm called the outer hyperplane approximation algorithm.
It was invented by Judd, Yeltekin, Conklin [JYC03].
This algorithm constructs the smallest convex set that contains the fixed point of the 𝐷(𝑆) operator.
Given that we are finding the smallest convex set that contains 𝑆, we can represent it on a computer as the intersection of
a finite number of half-spaces.
Let 𝐻 be a set of subgradients, and 𝐶 be a set of hyperplane levels.
We approximate 𝑆 by:

̃𝑆 = {(𝑤, 𝜃)|𝐻 ⋅ (𝑤, 𝜃) ≤ 𝐶}

A key feature of this algorithm is that we discretize the action space, i.e., we create a grid of possible values for 𝑚 and ℎ
(note that 𝑥 is implied by 𝑚 and ℎ). This discretization simplifies computation of ̃𝑆 by allowing us to find it by solving a
sequence of linear programs.
The outer hyperplane approximation algorithm proceeds as follows:

1. Initialize subgradients, 𝐻 , and hyperplane levels, 𝐶0.
2. Given a set of subgradients, 𝐻 , and hyperplane levels, 𝐶𝑡, for each subgradient ℎ𝑖 ∈ 𝐻 :

• Solve a linear program (described below) for each action in the action space.
• Find the maximum and update the corresponding hyperplane level, 𝐶𝑖,𝑡+1.

3. If |𝐶𝑡+1 − 𝐶𝑡| > 𝜖, return to 2.

208 Chapter 8. Competitive Equilibria of a Model of Chang

https://nbviewer.jupyter.org/github/QuantEcon/QuantEcon.notebooks/blob/master/recursive_repeated_games.ipynb

Advanced Dynamic Programming

Step 1 simply creates a large initial set 𝑆0.
Given some set 𝑆𝑡, Step 2 then constructs the set 𝑆𝑡+1 = 𝐷(𝑆𝑡). The linear program in Step 2 is designed to construct
a set 𝑆𝑡+1 that is as large as possible while satisfying the constraints of the 𝐷(𝑆) operator.
To do this, for each subgradient ℎ𝑖, and for each point in the action space (𝑚𝑗, ℎ𝑗), we solve the following problem:

max
[𝑤′,𝜃′]

ℎ𝑖 ⋅ (𝑤, 𝜃)

subject to

𝐻 ⋅ (𝑤′, 𝜃′) ≤ 𝐶𝑡

𝑤 = 𝑢(𝑓(𝑥𝑗)) + 𝑣(𝑚𝑗) + 𝛽𝑤′

𝜃 = 𝑢′(𝑓(𝑥𝑗))(𝑚𝑗 + 𝑥𝑗)

𝑥𝑗 = 𝑚𝑗(ℎ𝑗 − 1)

𝑚𝑗(𝑢′(𝑓(𝑥𝑗)) − 𝑣′(𝑚𝑗)) ≤ 𝛽𝜃′ (= if 𝑚𝑗 < �̄�)
This problem maximizes the hyperplane level for a given set of actions.
The second part of Step 2 then finds the maximum possible hyperplane level across the action space.
The algorithm constructs a sequence of progressively smaller sets 𝑆𝑡+1 ⊂ 𝑆𝑡 ⊂ 𝑆𝑡−1 ⋯ ⊂ 𝑆0.
Step 3 ends the algorithm when the difference between these sets is small enough.
We have created a Python class that solves the model assuming the following functional forms:

𝑢(𝑐) = 𝑙𝑜𝑔(𝑐)

𝑣(𝑚) = 1
500(𝑚�̄� − 0.5𝑚2)0.5

𝑓(𝑥) = 180 − (0.4𝑥)2

The remaining parameters {𝛽, �̄�, ℎ, ℎ̄} are then variables to be specified for an instance of the Chang class.
Below we use the class to solve the model and plot the resulting equilibrium set, once with 𝛽 = 0.3 and once with 𝛽 = 0.8.
(Here we have set the number of subgradients to 10 in order to speed up the code for now - we can increase accuracy by
increasing the number of subgradients)

"""
Provides a class called ChangModel to solve different
parameterizations of the Chang (1998) model.
"""

import numpy as np
import quantecon as qe
import time

from scipy.spatial import ConvexHull
from scipy.optimize import linprog, minimize, minimize_scalar
from scipy.interpolate import UnivariateSpline
import numpy.polynomial.chebyshev as cheb

class ChangModel:

(continues on next page)

8.6. Calculating all Promise-Value Pairs in CE 209

Advanced Dynamic Programming

(continued from previous page)

"""
Class to solve for the competitive and sustainable sets in the Chang (1998)
model, for different parameterizations.
"""

def __init__(self, β, mbar, h_min, h_max, n_h, n_m, N_g):
Record parameters
self.β, self.mbar, self.h_min, self.h_max = β, mbar, h_min, h_max
self.n_h, self.n_m, self.N_g = n_h, n_m, N_g

Create other parameters
self.m_min = 1e-9
self.m_max = self.mbar
self.N_a = self.n_h*self.n_m

Utility and production functions
uc = lambda c: np.log(c)
uc_p = lambda c: 1/c
v = lambda m: 1/500 * (mbar * m - 0.5 * m**2)**0.5
v_p = lambda m: 0.5/500 * (mbar * m - 0.5 * m**2)**(-0.5) * (mbar - m)
u = lambda h, m: uc(f(h, m)) + v(m)

def f(h, m):
x = m * (h - 1)
f = 180 - (0.4 * x)**2
return f

def θ(h, m):
x = m * (h - 1)
θ = uc_p(f(h, m)) * (m + x)
return θ

Create set of possible action combinations, A
A1 = np.linspace(h_min, h_max, n_h).reshape(n_h, 1)
A2 = np.linspace(self.m_min, self.m_max, n_m).reshape(n_m, 1)
self.A = np.concatenate((np.kron(np.ones((n_m, 1)), A1),

np.kron(A2, np.ones((n_h, 1)))), axis=1)

Pre-compute utility and output vectors
self.euler_vec = -np.multiply(self.A[:, 1], \

uc_p(f(self.A[:, 0], self.A[:, 1])) - v_p(self.A[:, 1]))
self.u_vec = u(self.A[:, 0], self.A[:, 1])
self.Θ_vec = θ(self.A[:, 0], self.A[:, 1])
self.f_vec = f(self.A[:, 0], self.A[:, 1])
self.bell_vec = np.multiply(uc_p(f(self.A[:, 0],

self.A[:, 1])),
np.multiply(self.A[:, 1],
(self.A[:, 0] - 1))) \

+ np.multiply(self.A[:, 1],
v_p(self.A[:, 1]))

Find extrema of (w, θ) space for initial guess of equilibrium sets
p_vec = np.zeros(self.N_a)
w_vec = np.zeros(self.N_a)
for i in range(self.N_a):

p_vec[i] = self.Θ_vec[i]

(continues on next page)

210 Chapter 8. Competitive Equilibria of a Model of Chang

Advanced Dynamic Programming

(continued from previous page)

w_vec[i] = self.u_vec[i]/(1 - β)

w_space = np.array([min(w_vec[~np.isinf(w_vec)]),
max(w_vec[~np.isinf(w_vec)])])

p_space = np.array([0, max(p_vec[~np.isinf(w_vec)])])
self.p_space = p_space

Set up hyperplane levels and gradients for iterations
def SG_H_V(N, w_space, p_space):

"""
This function initializes the subgradients, hyperplane levels,
and extreme points of the value set by choosing an appropriate
origin and radius. It is based on a similar function in QuantEcon's
Games.jl
"""

First, create a unit circle. Want points placed on [0, 2π]
inc = 2 * np.pi / N
degrees = np.arange(0, 2 * np.pi, inc)

Points on circle
H = np.zeros((N, 2))
for i in range(N):

x = degrees[i]
H[i, 0] = np.cos(x)
H[i, 1] = np.sin(x)

Then calculate origin and radius
o = np.array([np.mean(w_space), np.mean(p_space)])
r1 = max((max(w_space) - o[0])**2, (o[0] - min(w_space))**2)
r2 = max((max(p_space) - o[1])**2, (o[1] - min(p_space))**2)
r = np.sqrt(r1 + r2)

Now calculate vertices
Z = np.zeros((2, N))
for i in range(N):

Z[0, i] = o[0] + r*H.T[0, i]
Z[1, i] = o[1] + r*H.T[1, i]

Corresponding hyperplane levels
C = np.zeros(N)
for i in range(N):

C[i] = np.dot(Z[:, i], H[i, :])

return C, H, Z

C, self.H, Z = SG_H_V(N_g, w_space, p_space)
C = C.reshape(N_g, 1)
self.c0_c, self.c0_s, self.c1_c, self.c1_s = np.copy(C), np.copy(C), \

np.copy(C), np.copy(C)
self.z0_s, self.z0_c, self.z1_s, self.z1_c = np.copy(Z), np.copy(Z), \

np.copy(Z), np.copy(Z)

self.w_bnds_s, self.w_bnds_c = (w_space[0], w_space[1]), \
(w_space[0], w_space[1])

self.p_bnds_s, self.p_bnds_c = (p_space[0], p_space[1]), \

(continues on next page)

8.6. Calculating all Promise-Value Pairs in CE 211

Advanced Dynamic Programming

(continued from previous page)

(p_space[0], p_space[1])

Create dictionaries to save equilibrium set for each iteration
self.c_dic_s, self.c_dic_c = {}, {}
self.c_dic_s[0], self.c_dic_c[0] = self.c0_s, self.c0_c

def solve_worst_spe(self):
"""
Method to solve for BR(Z). See p.449 of Chang (1998)
"""

p_vec = np.full(self.N_a, np.nan)
c = [1, 0]

Pre-compute constraints
aineq_mbar = np.vstack((self.H, np.array([0, -self.β])))
bineq_mbar = np.vstack((self.c0_s, 0))

aineq = self.H
bineq = self.c0_s
aeq = [[0, -self.β]]

for j in range(self.N_a):
Only try if consumption is possible
if self.f_vec[j] > 0:

If m = mbar, use inequality constraint
if self.A[j, 1] == self.mbar:

bineq_mbar[-1] = self.euler_vec[j]
res = linprog(c, A_ub=aineq_mbar, b_ub=bineq_mbar,

bounds=(self.w_bnds_s, self.p_bnds_s))
else:

beq = self.euler_vec[j]
res = linprog(c, A_ub=aineq, b_ub=bineq, A_eq=aeq, b_eq=beq,

bounds=(self.w_bnds_s, self.p_bnds_s))
if res.status == 0:

p_vec[j] = self.u_vec[j] + self.β * res.x[0]

Max over h and min over other variables (see Chang (1998) p.449)
self.br_z = np.nanmax(np.nanmin(p_vec.reshape(self.n_m, self.n_h), 0))

def solve_subgradient(self):
"""
Method to solve for E(Z). See p.449 of Chang (1998)
"""

Pre-compute constraints
aineq_C_mbar = np.vstack((self.H, np.array([0, -self.β])))
bineq_C_mbar = np.vstack((self.c0_c, 0))

aineq_C = self.H
bineq_C = self.c0_c
aeq_C = [[0, -self.β]]

aineq_S_mbar = np.vstack((np.vstack((self.H, np.array([0, -self.β]))),
np.array([-self.β, 0])))

bineq_S_mbar = np.vstack((self.c0_s, np.zeros((2, 1))))

(continues on next page)

212 Chapter 8. Competitive Equilibria of a Model of Chang

Advanced Dynamic Programming

(continued from previous page)

aineq_S = np.vstack((self.H, np.array([-self.β, 0])))
bineq_S = np.vstack((self.c0_s, 0))
aeq_S = [[0, -self.β]]

Update maximal hyperplane level
for i in range(self.N_g):

c_a1a2_c, t_a1a2_c = np.full(self.N_a, -np.inf), \
np.zeros((self.N_a, 2))

c_a1a2_s, t_a1a2_s = np.full(self.N_a, -np.inf), \
np.zeros((self.N_a, 2))

c = [-self.H[i, 0], -self.H[i, 1]]

for j in range(self.N_a):
Only try if consumption is possible
if self.f_vec[j] > 0:

COMPETITIVE EQUILIBRIA
If m = mbar, use inequality constraint
if self.A[j, 1] == self.mbar:

bineq_C_mbar[-1] = self.euler_vec[j]
res = linprog(c, A_ub=aineq_C_mbar, b_ub=bineq_C_mbar,

bounds=(self.w_bnds_c, self.p_bnds_c))
If m < mbar, use equality constraint
else:

beq_C = self.euler_vec[j]
res = linprog(c, A_ub=aineq_C, b_ub=bineq_C, A_eq = aeq_C,

b_eq = beq_C, bounds=(self.w_bnds_c, \
self.p_bnds_c))

if res.status == 0:
c_a1a2_c[j] = self.H[i, 0] * (self.u_vec[j] \

+ self.β * res.x[0]) + self.H[i, 1] * self.Θ_vec[j]
t_a1a2_c[j] = res.x

SUSTAINABLE EQUILIBRIA
If m = mbar, use inequality constraint
if self.A[j, 1] == self.mbar:

bineq_S_mbar[-2] = self.euler_vec[j]
bineq_S_mbar[-1] = self.u_vec[j] - self.br_z
res = linprog(c, A_ub=aineq_S_mbar, b_ub=bineq_S_mbar,

bounds=(self.w_bnds_s, self.p_bnds_s))
If m < mbar, use equality constraint
else:

bineq_S[-1] = self.u_vec[j] - self.br_z
beq_S = self.euler_vec[j]
res = linprog(c, A_ub=aineq_S, b_ub=bineq_S, A_eq = aeq_S,

b_eq = beq_S, bounds=(self.w_bnds_s, \
self.p_bnds_s))

if res.status == 0:
c_a1a2_s[j] = self.H[i, 0] * (self.u_vec[j] \

+ self.β*res.x[0]) + self.H[i, 1] * self.Θ_vec[j]
t_a1a2_s[j] = res.x

idx_c = np.where(c_a1a2_c == max(c_a1a2_c))[0][0]
self.z1_c[:, i] = np.array([self.u_vec[idx_c]

(continues on next page)

8.6. Calculating all Promise-Value Pairs in CE 213

Advanced Dynamic Programming

(continued from previous page)

+ self.β * t_a1a2_c[idx_c, 0],
self.Θ_vec[idx_c]])

idx_s = np.where(c_a1a2_s == max(c_a1a2_s))[0][0]
self.z1_s[:, i] = np.array([self.u_vec[idx_s]

+ self.β * t_a1a2_s[idx_s, 0],
self.Θ_vec[idx_s]])

for i in range(self.N_g):
self.c1_c[i] = np.dot(self.z1_c[:, i], self.H[i, :])
self.c1_s[i] = np.dot(self.z1_s[:, i], self.H[i, :])

def solve_sustainable(self, tol=1e-5, max_iter=250):
"""
Method to solve for the competitive and sustainable equilibrium sets.
"""

t = time.time()
diff = tol + 1
iters = 0

print('### --------------- ###')
print('Solving Chang Model Using Outer Hyperplane Approximation')
print('### --------------- ### \n')

print('Maximum difference when updating hyperplane levels:')

while diff > tol and iters < max_iter:
iters = iters + 1
self.solve_worst_spe()
self.solve_subgradient()
diff = max(np.maximum(abs(self.c0_c - self.c1_c),

abs(self.c0_s - self.c1_s)))
print(diff)

Update hyperplane levels
self.c0_c, self.c0_s = np.copy(self.c1_c), np.copy(self.c1_s)

Update bounds for w and θ
wmin_c, wmax_c = np.min(self.z1_c, axis=1)[0], \

np.max(self.z1_c, axis=1)[0]
pmin_c, pmax_c = np.min(self.z1_c, axis=1)[1], \

np.max(self.z1_c, axis=1)[1]

wmin_s, wmax_s = np.min(self.z1_s, axis=1)[0], \
np.max(self.z1_s, axis=1)[0]

pmin_S, pmax_S = np.min(self.z1_s, axis=1)[1], \
np.max(self.z1_s, axis=1)[1]

self.w_bnds_s, self.w_bnds_c = (wmin_s, wmax_s), (wmin_c, wmax_c)
self.p_bnds_s, self.p_bnds_c = (pmin_S, pmax_S), (pmin_c, pmax_c)

Save iteration
self.c_dic_c[iters], self.c_dic_s[iters] = np.copy(self.c1_c), \

np.copy(self.c1_s)
self.iters = iters

(continues on next page)

214 Chapter 8. Competitive Equilibria of a Model of Chang

Advanced Dynamic Programming

(continued from previous page)

elapsed = time.time() - t
print('Convergence achieved after {} iterations and {} \

seconds'.format(iters, round(elapsed, 2)))

def solve_bellman(self, θ_min, θ_max, order, disp=False, tol=1e-7, maxiters=100):
"""
Continuous Method to solve the Bellman equation in section 25.3
"""
mbar = self.mbar

Utility and production functions
uc = lambda c: np.log(c)
uc_p = lambda c: 1 / c
v = lambda m: 1 / 500 * (mbar * m - 0.5 * m**2)**0.5
v_p = lambda m: 0.5/500 * (mbar*m - 0.5 * m**2)**(-0.5) * (mbar - m)
u = lambda h, m: uc(f(h, m)) + v(m)

def f(h, m):
x = m * (h - 1)
f = 180 - (0.4 * x)**2
return f

def θ(h, m):
x = m * (h - 1)
θ = uc_p(f(h, m)) * (m + x)
return θ

Bounds for Maximization
lb1 = np.array([self.h_min, 0, θ_min])
ub1 = np.array([self.h_max, self.mbar - 1e-5, θ_max])
lb2 = np.array([self.h_min, θ_min])
ub2 = np.array([self.h_max, θ_max])

Initialize Value Function coefficients
Calculate roots of Chebyshev polynomial
k = np.linspace(order, 1, order)
roots = np.cos((2 * k - 1) * np.pi / (2 * order))
Scale to approximation space
s = θ_min + (roots - -1) / 2 * (θ_max - θ_min)
Create a basis matrix
Φ = cheb.chebvander(roots, order - 1)
c = np.zeros(Φ.shape[0])

Function to minimize and constraints
def p_fun(x):

scale = -1 + 2 * (x[2] - θ_min)/(θ_max - θ_min)
p_fun = - (u(x[0], x[1]) \

+ self.β * np.dot(cheb.chebvander(scale, order - 1), c))
return p_fun

def p_fun2(x):
scale = -1 + 2*(x[1] - θ_min)/(θ_max - θ_min)
p_fun = - (u(x[0],mbar) \

+ self.β * np.dot(cheb.chebvander(scale, order - 1), c))
return p_fun

(continues on next page)

8.6. Calculating all Promise-Value Pairs in CE 215

Advanced Dynamic Programming

(continued from previous page)

cons1 = ({'type': 'eq', 'fun': lambda x: uc_p(f(x[0], x[1])) * x[1]
* (x[0] - 1) + v_p(x[1]) * x[1] + self.β * x[2] - θ},

{'type': 'eq', 'fun': lambda x: uc_p(f(x[0], x[1]))
* x[0] * x[1] - θ})

cons2 = ({'type': 'ineq', 'fun': lambda x: uc_p(f(x[0], mbar)) * mbar
* (x[0] - 1) + v_p(mbar) * mbar + self.β * x[1] - θ},

{'type': 'eq', 'fun': lambda x: uc_p(f(x[0], mbar))
* x[0] * mbar - θ})

bnds1 = np.concatenate([lb1.reshape(3, 1), ub1.reshape(3, 1)], axis=1)
bnds2 = np.concatenate([lb2.reshape(2, 1), ub2.reshape(2, 1)], axis=1)

Bellman Iterations
diff = 1
iters = 1

while diff > tol:
1. Maximization, given value function guess

p_iter1 = np.zeros(order)
for i in range(order):

θ = s[i]
res = minimize(p_fun,

lb1 + (ub1-lb1) / 2,
method='SLSQP',
bounds=bnds1,
constraints=cons1,
tol=1e-10)

if res.success == True:
p_iter1[i] = -p_fun(res.x)

res = minimize(p_fun2,
lb2 + (ub2-lb2) / 2,
method='SLSQP',
bounds=bnds2,
constraints=cons2,
tol=1e-10)

if -p_fun2(res.x) > p_iter1[i] and res.success == True:
p_iter1[i] = -p_fun2(res.x)

2. Bellman updating of Value Function coefficients
c1 = np.linalg.solve(Φ, p_iter1)
3. Compute distance and update
diff = np.linalg.norm(c - c1)
if bool(disp == True):

print(diff)
c = np.copy(c1)
iters = iters + 1
if iters > maxiters:

print('Convergence failed after {} iterations'.format(maxiters))
break

self.θ_grid = s
self.p_iter = p_iter1
self.Φ = Φ
self.c = c
print('Convergence achieved after {} iterations'.format(iters))

(continues on next page)

216 Chapter 8. Competitive Equilibria of a Model of Chang

Advanced Dynamic Programming

(continued from previous page)

Check residuals
θ_grid_fine = np.linspace(θ_min, θ_max, 100)
resid_grid = np.zeros(100)
p_grid = np.zeros(100)
θ_prime_grid = np.zeros(100)
m_grid = np.zeros(100)
h_grid = np.zeros(100)
for i in range(100):

θ = θ_grid_fine[i]
res = minimize(p_fun,

lb1 + (ub1-lb1) / 2,
method='SLSQP',
bounds=bnds1,
constraints=cons1,
tol=1e-10)

if res.success == True:
p = -p_fun(res.x)
p_grid[i] = p
θ_prime_grid[i] = res.x[2]
h_grid[i] = res.x[0]
m_grid[i] = res.x[1]

res = minimize(p_fun2,
lb2 + (ub2-lb2)/2,
method='SLSQP',
bounds=bnds2,
constraints=cons2,
tol=1e-10)

if -p_fun2(res.x) > p and res.success == True:
p = -p_fun2(res.x)
p_grid[i] = p
θ_prime_grid[i] = res.x[1]
h_grid[i] = res.x[0]
m_grid[i] = self.mbar

scale = -1 + 2 * (θ - θ_min)/(θ_max - θ_min)
resid_grid[i] = np.dot(cheb.chebvander(scale, order-1), c) - p

self.resid_grid = resid_grid
self.θ_grid_fine = θ_grid_fine
self.θ_prime_grid = θ_prime_grid
self.m_grid = m_grid
self.h_grid = h_grid
self.p_grid = p_grid
self.x_grid = m_grid * (h_grid - 1)

Simulate
θ_series = np.zeros(31)
m_series = np.zeros(30)
h_series = np.zeros(30)

Find initial θ
def ValFun(x):

scale = -1 + 2*(x - θ_min)/(θ_max - θ_min)
p_fun = np.dot(cheb.chebvander(scale, order - 1), c)
return -p_fun

(continues on next page)

8.6. Calculating all Promise-Value Pairs in CE 217

Advanced Dynamic Programming

(continued from previous page)

res = minimize(ValFun,
(θ_min + θ_max)/2,
bounds=[(θ_min, θ_max)])

θ_series[0] = res.x

Simulate
for i in range(30):

θ = θ_series[i]
res = minimize(p_fun,

lb1 + (ub1-lb1)/2,
method='SLSQP',
bounds=bnds1,
constraints=cons1,
tol=1e-10)

if res.success == True:
p = -p_fun(res.x)
h_series[i] = res.x[0]
m_series[i] = res.x[1]
θ_series[i+1] = res.x[2]

res2 = minimize(p_fun2,
lb2 + (ub2-lb2)/2,
method='SLSQP',
bounds=bnds2,
constraints=cons2,
tol=1e-10)

if -p_fun2(res2.x) > p and res2.success == True:
h_series[i] = res2.x[0]
m_series[i] = self.mbar
θ_series[i+1] = res2.x[1]

self.θ_series = θ_series
self.m_series = m_series
self.h_series = h_series
self.x_series = m_series * (h_series - 1)

ch1 = ChangModel(β=0.3, mbar=30, h_min=0.9, h_max=2, n_h=8, n_m=35, N_g=10)
ch1.solve_sustainable()

Solving Chang Model Using Outer Hyperplane Approximation

Maximum difference when updating hyperplane levels:

[1.9168]

[0.66782]

[0.49235]

[0.32412]

218 Chapter 8. Competitive Equilibria of a Model of Chang

Advanced Dynamic Programming

[0.19022]

[0.10863]

[0.05817]

[0.0262]

[0.01836]

[0.01415]

[0.00297]

[0.00089]

[0.00027]

[0.00008]

[0.00002]

[0.00001]
Convergence achieved after 16 iterations and 42.36 seconds

def plot_competitive(ChangModel):
"""
Method that only plots competitive equilibrium set
"""
poly_C = polytope.Polytope(ChangModel.H, ChangModel.c1_c)
ext_C = polytope.extreme(poly_C)

fig, ax = plt.subplots(figsize=(7, 5))

ax.set_xlabel('w', fontsize=16)
ax.set_ylabel(r"θ", fontsize=18)

ax.fill(ext_C[:,0], ext_C[:,1], 'r', zorder=0)
ChangModel.min_theta = min(ext_C[:, 1])
ChangModel.max_theta = max(ext_C[:, 1])

Add point showing Ramsey Plan
idx_Ramsey = np.where(ext_C[:, 0] == max(ext_C[:, 0]))[0][0]
R = ext_C[idx_Ramsey, :]
ax.scatter(R[0], R[1], 150, 'black', 'o', zorder=1)
w_min = min(ext_C[:, 0])

Label Ramsey Plan slightly to the right of the point

(continues on next page)

8.6. Calculating all Promise-Value Pairs in CE 219

Advanced Dynamic Programming

(continued from previous page)

ax.annotate("R", xy=(R[0], R[1]), xytext=(R[0] + 0.03 * (R[0] - w_min),
R[1]), fontsize=18)

plt.tight_layout()
plt.show()

plot_competitive(ch1)

ch2 = ChangModel(β=0.8, mbar=30, h_min=0.9, h_max=1/0.8,
n_h=8, n_m=35, N_g=10)

ch2.solve_sustainable()

Solving Chang Model Using Outer Hyperplane Approximation

Maximum difference when updating hyperplane levels:

[0.06369]

[0.02476]

[0.02153]

220 Chapter 8. Competitive Equilibria of a Model of Chang

Advanced Dynamic Programming

[0.01915]

[0.01795]

[0.01642]

[0.01507]

[0.01284]

[0.01106]

[0.00694]

[0.0085]

[0.00781]

[0.00433]

[0.00492]

[0.00303]

[0.00182]

[0.00638]

[0.00116]

[0.00093]

[0.00075]

[0.0006]

[0.00494]

[0.00038]

[0.00121]

8.6. Calculating all Promise-Value Pairs in CE 221

Advanced Dynamic Programming

[0.00024]

[0.0002]

[0.00016]

[0.00013]

[0.0001]

[0.00008]

[0.00006]

[0.00005]

[0.00004]

[0.00003]

[0.00003]

[0.00002]

[0.00002]

[0.00001]

[0.00001]

[0.00001]
Convergence achieved after 40 iterations and 122.58 seconds

plot_competitive(ch2)

222 Chapter 8. Competitive Equilibria of a Model of Chang

Advanced Dynamic Programming

8.7 Solving a Continuation Ramsey Planner’s Bellman Equation

In this section we solve the Bellman equation confronting a continuation Ramsey planner.
The construction of a Ramsey plan is decomposed into a two subproblems in Ramsey plans, time inconsistency, sustainable
plans and dynamic Stackelberg problems.

• Subproblem 1 is faced by a sequence of continuation Ramsey planners at 𝑡 ≥ 1.
• Subproblem 2 is faced by a Ramsey planner at 𝑡 = 0.

The problem is:

𝐽(𝜃) = max
𝑚,𝑥,ℎ,𝜃′

𝑢(𝑓(𝑥)) + 𝑣(𝑚) + 𝛽𝐽(𝜃′)

subject to:

𝜃 ≤ 𝑢′(𝑓(𝑥))𝑥 + 𝑣′(𝑚)𝑚 + 𝛽𝜃′

𝜃 = 𝑢′(𝑓(𝑥))(𝑚 + 𝑥)

𝑥 = 𝑚(ℎ − 1)

(𝑚, 𝑥, ℎ) ∈ 𝐸

𝜃′ ∈ Ω
To solve this Bellman equation, we must know the set Ω.

8.7. Solving a Continuation Ramsey Planner’s Bellman Equation 223

Advanced Dynamic Programming

We have solved the Bellman equation for the two sets of parameter values for which we computed the equilibrium value
sets above.
Hence for these parameter configurations, we know the bounds of Ω.
The two sets of parameters differ only in the level of 𝛽.
From the figures earlier in this lecture, we know that when 𝛽 = 0.3, Ω = [0.0088, 0.0499], and when 𝛽 = 0.8,
Ω = [0.0395, 0.2193]

ch1 = ChangModel(β=0.3, mbar=30, h_min=0.99, h_max=1/0.3,
n_h=8, n_m=35, N_g=50)

ch2 = ChangModel(β=0.8, mbar=30, h_min=0.1, h_max=1/0.8,
n_h=20, n_m=50, N_g=50)

/tmp/ipykernel_2455/1608401414.py:33: RuntimeWarning: invalid value encountered in␣
↪log
uc = lambda c: np.log(c)

ch1.solve_bellman(θ_min=0.01, θ_max=0.0499, order=30, tol=1e-6)
ch2.solve_bellman(θ_min=0.045, θ_max=0.15, order=30, tol=1e-6)

/tmp/ipykernel_2455/1608401414.py:382: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
p_iter1[i] = -p_fun(res.x)

/tmp/ipykernel_2455/1608401414.py:309: RuntimeWarning: invalid value encountered␣
↪in log
uc = lambda c: np.log(c)

Convergence achieved after 15 iterations

/tmp/ipykernel_2455/1608401414.py:427: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
p_grid[i] = p

/tmp/ipykernel_2455/1608401414.py:444: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
resid_grid[i] = np.dot(cheb.chebvander(scale, order-1), c) - p

/tmp/ipykernel_2455/1608401414.py:468: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
θ_series[0] = res.x

/home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages/scipy/optimize/
↪_optimize.py:404: RuntimeWarning: Values in x were outside bounds during a␣
↪minimize step, clipping to bounds
warnings.warn("Values in x were outside bounds during a "

224 Chapter 8. Competitive Equilibria of a Model of Chang

Advanced Dynamic Programming

Convergence achieved after 72 iterations

First, a quick check that our approximations of the value functions are good.
We do this by calculating the residuals between iterates on the value function on a fine grid:

max(abs(ch1.resid_grid)), max(abs(ch2.resid_grid))

(6.46313155971967e-06, 6.875358415925348e-07)

The value functions plotted below trace out the right edges of the sets of equilibrium values plotted above

fig, axes = plt.subplots(1, 2, figsize=(12, 4))

for ax, model in zip(axes, (ch1, ch2)):
ax.plot(model.θ_grid, model.p_iter)
ax.set(xlabel=r"θ",

ylabel=r"$J(\theta)$",
title=rf"$\beta = {model.β}$")

plt.show()

The next figure plots the optimal policy functions; values of 𝜃′, 𝑚, 𝑥, ℎ for each value of the state 𝜃:

for model in (ch1, ch2):

fig, axes = plt.subplots(2, 2, figsize=(12, 6), sharex=True)
fig.suptitle(rf"$\beta = {model.β}$", fontsize=16)

plots = [model.θ_prime_grid, model.m_grid,
model.h_grid, model.x_grid]

labels = [r"θ'", "m", "h", "x"]

for ax, plot, label in zip(axes.flatten(), plots, labels):
ax.plot(model.θ_grid_fine, plot)
ax.set_xlabel(r"θ", fontsize=14)
ax.set_ylabel(label, fontsize=14)

plt.show()

8.7. Solving a Continuation Ramsey Planner’s Bellman Equation 225

Advanced Dynamic Programming

With the first set of parameter values, the value of 𝜃′ chosen by the Ramsey planner quickly hits the upper limit of Ω.
But with the second set of parameters it converges to a value in the interior of the set.
Consequently, the choice of ̄𝜃 is clearly important with the first set of parameter values.
One way of seeing this is plotting 𝜃′(𝜃) for each set of parameters.
With the first set of parameter values, this function does not intersect the 45-degree line until ̄𝜃, whereas in the second
set of parameter values, it intersects in the interior.

226 Chapter 8. Competitive Equilibria of a Model of Chang

Advanced Dynamic Programming

fig, axes = plt.subplots(1, 2, figsize=(12, 4))

for ax, model in zip(axes, (ch1, ch2)):
ax.plot(model.θ_grid_fine, model.θ_prime_grid, label=r"$\theta'(\theta)$")
ax.plot(model.θ_grid_fine, model.θ_grid_fine, label=r"θ")
ax.set(xlabel=r"θ", title=rf"$\beta = {model.β}$")

axes[0].legend()
plt.show()

Subproblem 2 is equivalent to the planner choosing the initial value of 𝜃 (i.e. the value which maximizes the value
function).
From this starting point, we can then trace out the paths for {𝜃𝑡, 𝑚𝑡, ℎ𝑡, 𝑥𝑡}∞

𝑡=0 that support this equilibrium.
These are shown below for both sets of parameters

for model in (ch1, ch2):

fig, axes = plt.subplots(2, 2, figsize=(12, 6))
fig.suptitle(rf"$\beta = {model.β}$")

plots = [model.θ_series, model.m_series, model.h_series, model.x_series]
labels = [r"θ", "m", "h", "x"]

for ax, plot, label in zip(axes.flatten(), plots, labels):
ax.plot(plot)
ax.set(xlabel='t', ylabel=label)

plt.show()

8.7. Solving a Continuation Ramsey Planner’s Bellman Equation 227

Advanced Dynamic Programming

228 Chapter 8. Competitive Equilibria of a Model of Chang

Advanced Dynamic Programming

8.7.1 Next Steps

In Credible Government Policies in Chang Model we shall find a subset of competitive equilibria that are sustainable in
the sense that a sequence of government administrations that chooses sequentially, rather than once and for all at time 0
will choose to implement them.
In the process of constructing them, we shall construct another, smaller set of competitive equilibria.

8.7. Solving a Continuation Ramsey Planner’s Bellman Equation 229

Advanced Dynamic Programming

230 Chapter 8. Competitive Equilibria of a Model of Chang

CHAPTER

NINE

CREDIBLE GOVERNMENT POLICIES IN A MODEL OF CHANG

Contents

• Credible Government Policies in a Model of Chang

– Overview

– The Setting

– Calculating the Set of Sustainable Promise-Value Pairs

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install polytope

9.1 Overview

Some of the material in this lecture and competitive equilibria in the Chang model can be viewed as more sophisticated
and complete treatments of the topics discussed in Ramsey plans, time inconsistency, sustainable plans.
This lecture assumes almost the same economic environment analyzed in competitive equilibria in the Chang model.
The only change – and it is a substantial one – is the timing protocol for making government decisions.
In competitive equilibria in the Chang model, a Ramsey planner chose a comprehensive government policy once-and-for-all
at time 0.
Now in this lecture, there is no time 0 Ramsey planner.
Instead there is a sequence of government decision-makers, one for each 𝑡.
The time 𝑡 government decision-maker choose time 𝑡 government actions after forecasting what future governments will
do.
We use the notion of a sustainable plan proposed in [CK90], also referred to as a credible public policy in [Sto89].
Technically, this lecture starts where lecture competitive equilibria in the Chang model on Ramsey plans within the Chang
[Cha98] model stopped.
That lecture presents recursive representations of competitive equilibria and a Ramsey plan for a version of a model of
Calvo [Cal78] that Chang used to analyze and illustrate these concepts.
We used two operators to characterize competitive equilibria and a Ramsey plan, respectively.
In this lecture, we define a credible public policy or sustainable plan.

231

Advanced Dynamic Programming

Starting from a large enough initial set 𝑍0, we use iterations on Chang’s set-to-set operator �̃�(𝑍) to compute a set of
values associated with sustainable plans.
Chang’s operator �̃�(𝑍) is closely connected with the operator 𝐷(𝑍) introduced in lecture competitive equilibria in the
Chang model.

• �̃�(𝑍) incorporates all of the restrictions imposed in constructing the operator 𝐷(𝑍), but ….
• It adds some additional restrictions

– these additional restrictions incorporate the idea that a plan must be sustainable.
– sustainable means that the government wants to implement it at all times after all histories.

Let’s start with some standard imports:

import numpy as np
import polytope
import matplotlib.pyplot as plt
%matplotlib inline

`polytope` failed to import `cvxopt.glpk`.

will use `scipy.optimize.linprog`

9.2 The Setting

We begin by reviewing the set up deployed in competitive equilibria in the Chang model.
Chang’s model, adopted from Calvo, is designed to focus on the intertemporal trade-offs between the welfare benefits
of deflation and the welfare costs associated with the high tax collections required to retire money at a rate that delivers
deflation.
A benevolent time 0 government can promote utility generating increases in real balances only by imposing an infinite
sequence of sufficiently large distorting tax collections.
To promote the welfare increasing effects of high real balances, the government wants to induce gradual deflation.
We start by reviewing notation.
For a sequence of scalars ⃗𝑧 ≡ {𝑧𝑡}∞

𝑡=0, let ⃗𝑧𝑡 = (𝑧0, … , 𝑧𝑡), ⃗𝑧𝑡 = (𝑧𝑡, 𝑧𝑡+1, …).
An infinitely lived representative agent and an infinitely lived government exist at dates 𝑡 = 0, 1, ….
The objects in play are

• an initial quantity 𝑀−1 of nominal money holdings

• a sequence of inverse money growth rates ℎ⃗ and an associated sequence of nominal money holdings �⃗�
• a sequence of values of money ⃗𝑞
• a sequence of real money holdings �⃗�
• a sequence of total tax collections ⃗𝑥
• a sequence of per capita rates of consumption ⃗𝑐
• a sequence of per capita incomes ⃗𝑦

232 Chapter 9. Credible Government Policies in a Model of Chang

Advanced Dynamic Programming

A benevolent government chooses sequences (�⃗�, ℎ⃗, ⃗𝑥) subject to a sequence of budget constraints and other constraints
imposed by competitive equilibrium.
Given tax collection and price of money sequences, a representative household chooses sequences (⃗𝑐, �⃗�) of consumption
and real balances.
In competitive equilibrium, the price of money sequence ⃗𝑞 clears markets, thereby reconciling decisions of the government
and the representative household.

9.2.1 The Household’s Problem

A representative household faces a nonnegative value of money sequence ⃗𝑞 and sequences ⃗𝑦, ⃗𝑥 of income and total tax
collections, respectively.
The household chooses nonnegative sequences ⃗𝑐, �⃗� of consumption and nominal balances, respectively, to maximize

∞
∑
𝑡=0

𝛽𝑡 [𝑢(𝑐𝑡) + 𝑣(𝑞𝑡𝑀𝑡)] (9.1)

subject to

𝑞𝑡𝑀𝑡 ≤ 𝑦𝑡 + 𝑞𝑡𝑀𝑡−1 − 𝑐𝑡 − 𝑥𝑡 (9.2)

and

𝑞𝑡𝑀𝑡 ≤ �̄� (9.3)

Here 𝑞𝑡 is the reciprocal of the price level at 𝑡, also known as the value of money.
Chang [Cha98] assumes that

• 𝑢 ∶ ℝ+ → ℝ is twice continuously differentiable, strictly concave, and strictly increasing;
• 𝑣 ∶ ℝ+ → ℝ is twice continuously differentiable and strictly concave;
• 𝑢′(𝑐)𝑐→0 = lim𝑚→0 𝑣′(𝑚) = +∞;
• there is a finite level 𝑚 = 𝑚𝑓 such that 𝑣′(𝑚𝑓) = 0

Real balances carried out of a period equal 𝑚𝑡 = 𝑞𝑡𝑀𝑡.
Inequality (9.2) is the household’s time 𝑡 budget constraint.
It tells how real balances 𝑞𝑡𝑀𝑡 carried out of period 𝑡 depend on income, consumption, taxes, and real balances 𝑞𝑡𝑀𝑡−1
carried into the period.
Equation (9.3) imposes an exogenous upper bound �̄� on the choice of real balances, where �̄� ≥ 𝑚𝑓 .

9.2.2 Government

The government chooses a sequence of inverse money growth rates with time 𝑡 component ℎ𝑡 ≡ 𝑀𝑡−1
𝑀𝑡

∈ Π ≡ [𝜋, 𝜋],
where 0 < 𝜋 < 1 < 1

𝛽 ≤ 𝜋.
The government faces a sequence of budget constraints with time 𝑡 component

−𝑥𝑡 = 𝑞𝑡(𝑀𝑡 − 𝑀𝑡−1)

which, by using the definitions of 𝑚𝑡 and ℎ𝑡, can also be expressed as

−𝑥𝑡 = 𝑚𝑡(1 − ℎ𝑡) (9.4)

9.2. The Setting 233

Advanced Dynamic Programming

The restrictions 𝑚𝑡 ∈ [0, �̄�] and ℎ𝑡 ∈ Π evidently imply that 𝑥𝑡 ∈ 𝑋 ≡ [(𝜋 − 1)�̄�, (𝜋 − 1)�̄�].
We define the set 𝐸 ≡ [0, �̄�] × Π × 𝑋, so that we require that (𝑚, ℎ, 𝑥) ∈ 𝐸.
To represent the idea that taxes are distorting, Chang makes the following assumption about outcomes for per capita
output:

𝑦𝑡 = 𝑓(𝑥𝑡) (9.5)

where 𝑓 ∶ ℝ → ℝ satisfies 𝑓(𝑥) > 0, is twice continuously differentiable, 𝑓″(𝑥) < 0, and 𝑓(𝑥) = 𝑓(−𝑥) for all 𝑥 ∈ ℝ,
so that subsidies and taxes are equally distorting.
The purpose is not to model the causes of tax distortions in any detail but simply to summarize the outcome of those
distortions via the function 𝑓(𝑥).
A key part of the specification is that tax distortions are increasing in the absolute value of tax revenues.
The government chooses a competitive equilibrium that maximizes (9.1).

9.2.3 Within-period Timing Protocol

For the results in this lecture, the timing of actions within a period is important because of the incentives that it activates.
Chang assumed the following within-period timing of decisions:

• first, the government chooses ℎ𝑡 and 𝑥𝑡;
• then given ⃗𝑞 and its expectations about future values of 𝑥 and 𝑦’s, the household chooses 𝑀𝑡 and therefore 𝑚𝑡
because 𝑚𝑡 = 𝑞𝑡𝑀𝑡;

• then output 𝑦𝑡 = 𝑓(𝑥𝑡) is realized;
• finally 𝑐𝑡 = 𝑦𝑡

This within-period timing confronts the government with choices framed by how the private sector wants to respond when
the government takes time 𝑡 actions that differ from what the private sector had expected.
This timing will shape the incentives confronting the government at each history that are to be incorporated in the con-
struction of the �̃� operator below.

9.2.4 Household’s Problem

Given 𝑀−1 and {𝑞𝑡}∞
𝑡=0, the household’s problem is

ℒ = max
⃗𝑐,�⃗�

min
�⃗�,�⃗�

∞
∑
𝑡=0

𝛽𝑡{𝑢(𝑐𝑡) + 𝑣(𝑀𝑡𝑞𝑡) + 𝜆𝑡[𝑦𝑡 − 𝑐𝑡 − 𝑥𝑡 + 𝑞𝑡𝑀𝑡−1 − 𝑞𝑡𝑀𝑡]

+ 𝜇𝑡[�̄� − 𝑞𝑡𝑀𝑡]}

First-order conditions with respect to 𝑐𝑡 and 𝑀𝑡, respectively, are

𝑢′(𝑐𝑡) = 𝜆𝑡
𝑞𝑡[𝑢′(𝑐𝑡) − 𝑣′(𝑀𝑡𝑞𝑡)] ≤ 𝛽𝑢′(𝑐𝑡+1)𝑞𝑡+1, = if 𝑀𝑡𝑞𝑡 < �̄�

Using ℎ𝑡 = 𝑀𝑡−1
𝑀𝑡

and 𝑞𝑡 = 𝑚𝑡
𝑀𝑡

in these first-order conditions and rearranging implies

𝑚𝑡[𝑢′(𝑐𝑡) − 𝑣′(𝑚𝑡)] ≤ 𝛽𝑢′(𝑓(𝑥𝑡+1))𝑚𝑡+1ℎ𝑡+1, = if 𝑚𝑡 < �̄� (9.6)

234 Chapter 9. Credible Government Policies in a Model of Chang

Advanced Dynamic Programming

Define the following key variable

𝜃𝑡+1 ≡ 𝑢′(𝑓(𝑥𝑡+1))𝑚𝑡+1ℎ𝑡+1 (9.7)

This is real money balances at time 𝑡 + 1 measured in units of marginal utility, which Chang refers to as ‘the marginal
utility of real balances’.
From the standpoint of the household at time 𝑡, equation (9.7) shows that 𝜃𝑡+1 intermediates the influences of (⃗𝑥𝑡+1, �⃗�𝑡+1)
on the household’s choice of real balances 𝑚𝑡.
By “intermediates” we mean that the future paths (⃗𝑥𝑡+1, �⃗�𝑡+1) influence 𝑚𝑡 entirely through their effects on the scalar
𝜃𝑡+1.
The observation that the one dimensional promised marginal utility of real balances 𝜃𝑡+1 functions in this way is an
important step in constructing a class of competitive equilibria that have a recursive representation.
A closely related observation pervaded the analysis of Stackelberg plans in dynamic Stackelberg problems and the Calvo
model.

9.2.5 Competitive Equilibrium

Definition:
• A government policy is a pair of sequences (ℎ⃗, ⃗𝑥) where ℎ𝑡 ∈ Π ∀𝑡 ≥ 0.
• A price system is a non-negative value of money sequence ⃗𝑞.
• An allocation is a triple of non-negative sequences (⃗𝑐, �⃗�, ⃗𝑦).

It is required that time 𝑡 components (𝑚𝑡, 𝑥𝑡, ℎ𝑡) ∈ 𝐸.
Definition:
Given 𝑀−1, a government policy (ℎ⃗, ⃗𝑥), price system ⃗𝑞, and allocation (⃗𝑐, �⃗�, ⃗𝑦) are said to be a competitive equilibrium
if

• 𝑚𝑡 = 𝑞𝑡𝑀𝑡 and 𝑦𝑡 = 𝑓(𝑥𝑡).
• The government budget constraint is satisfied.
• Given ⃗𝑞, ⃗𝑥, ⃗𝑦, (⃗𝑐, �⃗�) solves the household’s problem.

9.2.6 A Credible Government Policy

Chang works with
A credible government policy with a recursive representation

• Here there is no time 0 Ramsey planner.
• Instead there is a sequence of governments, one for each 𝑡, that choose time 𝑡 government actions after forecasting
what future governments will do.

• Let 𝑤 = ∑∞
𝑡=0 𝛽𝑡 [𝑢(𝑐𝑡) + 𝑣(𝑞𝑡𝑀𝑡)] be a value associated with a particular competitive equilibrium.

• A recursive representation of a credible government policy is a pair of initial conditions (𝑤0, 𝜃0) and a five-tuple
of functions

ℎ(𝑤𝑡, 𝜃𝑡), 𝑚(ℎ𝑡, 𝑤𝑡, 𝜃𝑡), 𝑥(ℎ𝑡, 𝑤𝑡, 𝜃𝑡), 𝜒(ℎ𝑡, 𝑤𝑡, 𝜃𝑡), Ψ(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)

mapping 𝑤𝑡, 𝜃𝑡 and in some cases ℎ𝑡 into ℎ̂𝑡, 𝑚𝑡, 𝑥𝑡, 𝑤𝑡+1, and 𝜃𝑡+1, respectively.

9.2. The Setting 235

Advanced Dynamic Programming

• Starting from an initial condition (𝑤0, 𝜃0), a credible government policy can be constructed by iterating on these
functions in the following order that respects the within-period timing:

ℎ̂𝑡 = ℎ(𝑤𝑡, 𝜃𝑡)
𝑚𝑡 = 𝑚(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)
𝑥𝑡 = 𝑥(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)

𝑤𝑡+1 = 𝜒(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)
𝜃𝑡+1 = Ψ(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)

(9.8)

• Here it is to be understood that ℎ̂𝑡 is the action that the government policy instructs the government to take, while
ℎ𝑡 possibly not equal to ℎ̂𝑡 is some other action that the government is free to take at time 𝑡.

The plan is credible if it is in the time 𝑡 government’s interest to execute it.
Credibility requires that the plan be such that for all possible choices of ℎ𝑡 that are consistent with competitive equilibria,

𝑢(𝑓(𝑥(ℎ̂𝑡, 𝑤𝑡, 𝜃𝑡))) + 𝑣(𝑚(ℎ̂𝑡, 𝑤𝑡, 𝜃𝑡)) + 𝛽𝜒(ℎ̂𝑡, 𝑤𝑡, 𝜃𝑡)
≥ 𝑢(𝑓(𝑥(ℎ𝑡, 𝑤𝑡, 𝜃𝑡))) + 𝑣(𝑚(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)) + 𝛽𝜒(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)

so that at each instance and circumstance of choice, a government attains a weakly higher lifetime utility with continuation
value 𝑤𝑡+1 = Ψ(ℎ𝑡, 𝑤𝑡, 𝜃𝑡) by adhering to the plan and confirming the associated time 𝑡 action ℎ̂𝑡 that the public had
expected earlier.
Please note the subtle change in arguments of the functions used to represent a competitive equilibrium and a Ramsey
plan, on the one hand, and a credible government plan, on the other hand.
The extra arguments appearing in the functions used to represent a credible plan come from allowing the government to
contemplate disappointing the private sector’s expectation about its time 𝑡 choice ℎ̂𝑡.
A credible plan induces the government to confirm the private sector’s expectation.
The recursive representation of the plan uses the evolution of continuation values to deter the government from wanting
to disappoint the private sector’s expectations.
Technically, a Ramsey plan and a credible plan both incorporate history dependence.
For a Ramsey plan, this is encoded in the dynamics of the state variable 𝜃𝑡, a promised marginal utility that the Ramsey
plan delivers to the private sector.
For a credible government plan, we the two-dimensional state vector (𝑤𝑡, 𝜃𝑡) encodes history dependence.

9.2.7 Sustainable Plans

A government strategy 𝜎 and an allocation rule 𝛼 are said to constitute a sustainable plan (SP) if.
1. 𝜎 is admissible.
2. Given 𝜎, 𝛼 is competitive.
3. After any history ℎ⃗𝑡−1, the continuation of 𝜎 is optimal for the government; i.e., the sequence ℎ⃗𝑡 induced by 𝜎

after ℎ⃗𝑡−1 maximizes over 𝐶𝐸𝜋 given 𝛼.
Given any history ℎ⃗𝑡−1, the continuation of a sustainable plan is a sustainable plan.
Let Θ = {(�⃗�, ⃗𝑥, ℎ⃗) ∈ 𝐶𝐸 ∶ there is an SP whose outcome is(�⃗�, ⃗𝑥, ℎ⃗)}.
Sustainable outcomes are elements of Θ.

236 Chapter 9. Credible Government Policies in a Model of Chang

Advanced Dynamic Programming

Now consider the space

𝑆 = {(𝑤, 𝜃) ∶ there is a sustainable outcome (�⃗�, ⃗𝑥, ℎ⃗) ∈ Θ

with value

𝑤 =
∞

∑
𝑡=0

𝛽𝑡[𝑢(𝑓(𝑥𝑡)) + 𝑣(𝑚𝑡)] and such that 𝑢′(𝑓(𝑥0))(𝑚0 + 𝑥0) = 𝜃}

The space 𝑆 is a compact subset of 𝑊 × Ω where 𝑊 = [𝑤, 𝑤] is the space of values associated with sustainable plans.
Here 𝑤 and 𝑤 are finite bounds on the set of values.
Because there is at least one sustainable plan, 𝑆 is nonempty.
Now recall the within-period timing protocol, which we can depict (ℎ, 𝑥) → 𝑚 = 𝑞𝑀 → 𝑦 = 𝑐.
With this timing protocol in mind, the time 0 component of an SP has the following components:

1. A period 0 action ℎ̂ ∈ Π that the public expects the government to take, together with subsequent within-period
consequences 𝑚(ℎ̂), 𝑥(ℎ̂) when the government acts as expected.

2. For any first-period action ℎ ≠ ℎ̂ with ℎ ∈ 𝐶𝐸0
𝜋, a pair of within-period consequences 𝑚(ℎ), 𝑥(ℎ) when the

government does not act as the public had expected.
3. For every ℎ ∈ Π, a pair (𝑤′(ℎ), 𝜃′(ℎ)) ∈ 𝑆 to carry into next period.

These components must be such that it is optimal for the government to choose ℎ̂ as expected; and for every possible
ℎ ∈ Π, the government budget constraint and the household’s Euler equation must hold with continuation 𝜃 being 𝜃′(ℎ).
Given the timing protocol within the model, the representative household’s response to a government deviation to ℎ ≠
ℎ̂ from a prescribed ℎ̂ consists of a first-period action 𝑚(ℎ) and associated subsequent actions, together with future
equilibrium prices, captured by (𝑤′(ℎ), 𝜃′(ℎ)).
At this point, Chang introduces an idea in the spirit of Abreu, Pearce, and Stacchetti [APS90].
Let 𝑍 be a nonempty subset of 𝑊 × Ω.
Think of using pairs (𝑤′, 𝜃′) drawn from 𝑍 as candidate continuation value, promised marginal utility pairs.
Define the following operator:

�̃�(𝑍) = {(𝑤, 𝜃) ∶ there is ℎ̂ ∈ 𝐶𝐸0
𝜋 and for each ℎ ∈ 𝐶𝐸0

𝜋

a four-tuple (𝑚(ℎ), 𝑥(ℎ), 𝑤′(ℎ), 𝜃′(ℎ)) ∈ [0, �̄�] × 𝑋 × 𝑍
(9.9)

such that

𝑤 = 𝑢(𝑓(𝑥(ℎ̂))) + 𝑣(𝑚(ℎ̂)) + 𝛽𝑤′(ℎ̂) (9.10)

𝜃 = 𝑢′(𝑓(𝑥(ℎ̂)))(𝑚(ℎ̂) + 𝑥(ℎ̂)) (9.11)

and for all ℎ ∈ 𝐶𝐸0
𝜋

𝑤 ≥ 𝑢(𝑓(𝑥(ℎ))) + 𝑣(𝑚(ℎ)) + 𝛽𝑤′(ℎ) (9.12)

𝑥(ℎ) = 𝑚(ℎ)(ℎ − 1) (9.13)

and

𝑚(ℎ)(𝑢′(𝑓(𝑥(ℎ))) − 𝑣′(𝑚(ℎ))) ≤ 𝛽𝜃′(ℎ) (9.14)

with equality if 𝑚(ℎ) < �̄�}

9.2. The Setting 237

Advanced Dynamic Programming

This operator adds the key incentive constraint to the conditions that had defined the earlier 𝐷(𝑍) operator defined in
competitive equilibria in the Chang model.
Condition (9.12) requires that the plan deter the government from wanting to take one-shot deviations when candidate
continuation values are drawn from 𝑍.
Proposition:

1. If 𝑍 ⊂ �̃�(𝑍), then �̃�(𝑍) ⊂ 𝑆 (‘self-generation’).

2. 𝑆 = �̃�(𝑆) (‘factorization’).
Proposition:.

1. Monotonicity of �̃�: 𝑍 ⊂ 𝑍′ implies �̃�(𝑍) ⊂ �̃�(𝑍′).
2. 𝑍 compact implies that �̃�(𝑍) is compact.

Chang establishes that 𝑆 is compact and that therefore there exists a highest value SP and a lowest value SP.
Further, the preceding structure allows Chang to compute 𝑆 by iterating to convergence on �̃� provided that one begins
with a sufficiently large initial set 𝑍0.
This structure delivers the following recursive representation of a sustainable outcome:

1. choose an initial (𝑤0, 𝜃0) ∈ 𝑆;
2. generate a sustainable outcome recursively by iterating on (9.8), which we repeat here for convenience:

ℎ̂𝑡 = ℎ(𝑤𝑡, 𝜃𝑡)
𝑚𝑡 = 𝑚(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)
𝑥𝑡 = 𝑥(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)

𝑤𝑡+1 = 𝜒(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)
𝜃𝑡+1 = Ψ(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)

9.3 Calculating the Set of Sustainable Promise-Value Pairs

Above we defined the �̃�(𝑍) operator as (9.9).
Chang (1998) provides a method for dealing with the final three constraints.
These incentive constraints ensure that the government wants to choose ℎ̂ as the private sector had expected it to.
Chang’s simplification starts from the idea that, when consideringwhether or not to confirm the private sector’s expectation,
the government only needs to consider the payoff of the best possible deviation.
Equally, to provide incentives to the government, we only need to consider the harshest possible punishment.
Let ℎ denote some possible deviation. Chang defines:

𝑃(ℎ; 𝑍) = min𝑢(𝑓(𝑥)) + 𝑣(𝑚) + 𝛽𝑤′

where the minimization is subject to

𝑥 = 𝑚(ℎ − 1)

𝑚(ℎ)(𝑢′(𝑓(𝑥(ℎ))) + 𝑣′(𝑚(ℎ))) ≤ 𝛽𝜃′(ℎ) (with equality if 𝑚(ℎ) < �̄�)}

(𝑚, 𝑥, 𝑤′, 𝜃′) ∈ [0, �̄�] × 𝑋 × 𝑍
For a given deviation ℎ, this problem finds the worst possible sustainable value.

238 Chapter 9. Credible Government Policies in a Model of Chang

Advanced Dynamic Programming

We then define:

𝐵𝑅(𝑍) = max𝑃(ℎ; 𝑍) subject to ℎ ∈ 𝐶𝐸0
𝜋

𝐵𝑅(𝑍) is the value of the government’s most tempting deviation.
With this in hand, we can define a new operator 𝐸(𝑍) that is equivalent to the �̃�(𝑍) operator but simpler to implement:

𝐸(𝑍) = {(𝑤, 𝜃) ∶ ∃ℎ ∈ 𝐶𝐸0
𝜋 and (𝑚(ℎ), 𝑥(ℎ), 𝑤′(ℎ), 𝜃′(ℎ)) ∈ [0, �̄�] × 𝑋 × 𝑍

such that

𝑤 = 𝑢(𝑓(𝑥(ℎ))) + 𝑣(𝑚(ℎ)) + 𝛽𝑤′(ℎ)

𝜃 = 𝑢′(𝑓(𝑥(ℎ)))(𝑚(ℎ) + 𝑥(ℎ))

𝑥(ℎ) = 𝑚(ℎ)(ℎ − 1)

𝑚(ℎ)(𝑢′(𝑓(𝑥(ℎ))) − 𝑣′(𝑚(ℎ))) ≤ 𝛽𝜃′(ℎ) (with equality if 𝑚(ℎ) < �̄�)
and

𝑤 ≥ 𝐵𝑅(𝑍)}

Aside from the final incentive constraint, this is the same as the operator in competitive equilibria in the Chang model.
Consequently, to implement this operator we just need to add one step to our outer hyperplane approximation algorithm :

1. Initialize subgradients, 𝐻 , and hyperplane levels, 𝐶0.
2. Given a set of subgradients, 𝐻 , and hyperplane levels, 𝐶𝑡, calculate 𝐵𝑅(𝑆𝑡).
3. Given 𝐻 , 𝐶𝑡, and 𝐵𝑅(𝑆𝑡), for each subgradient ℎ𝑖 ∈ 𝐻 :

• Solve a linear program (described below) for each action in the action space.
• Find the maximum and update the corresponding hyperplane level, 𝐶𝑖,𝑡+1.

4. If |𝐶𝑡+1 − 𝐶𝑡| > 𝜖, return to 2.
Step 1 simply creates a large initial set 𝑆0.
Given some set 𝑆𝑡, Step 2 then constructs the value 𝐵𝑅(𝑆𝑡).
To do this, we solve the following problem for each point in the action space (𝑚𝑗, ℎ𝑗):

min
[𝑤′,𝜃′]

𝑢(𝑓(𝑥𝑗)) + 𝑣(𝑚𝑗) + 𝛽𝑤′

subject to

𝐻 ⋅ (𝑤′, 𝜃′) ≤ 𝐶𝑡

𝑥𝑗 = 𝑚𝑗(ℎ𝑗 − 1)

𝑚𝑗(𝑢′(𝑓(𝑥𝑗)) − 𝑣′(𝑚𝑗)) ≤ 𝛽𝜃′ (= if 𝑚𝑗 < �̄�)
This gives us a matrix of possible values, corresponding to each point in the action space.
To find 𝐵𝑅(𝑍), we minimize over the 𝑚 dimension and maximize over the ℎ dimension.
Step 3 then constructs the set 𝑆𝑡+1 = 𝐸(𝑆𝑡). The linear program in Step 3 is designed to construct a set 𝑆𝑡+1 that is as
large as possible while satisfying the constraints of the 𝐸(𝑆) operator.

9.3. Calculating the Set of Sustainable Promise-Value Pairs 239

Advanced Dynamic Programming

To do this, for each subgradient ℎ𝑖, and for each point in the action space (𝑚𝑗, ℎ𝑗), we solve the following problem:

max
[𝑤′,𝜃′]

ℎ𝑖 ⋅ (𝑤, 𝜃)

subject to

𝐻 ⋅ (𝑤′, 𝜃′) ≤ 𝐶𝑡

𝑤 = 𝑢(𝑓(𝑥𝑗)) + 𝑣(𝑚𝑗) + 𝛽𝑤′

𝜃 = 𝑢′(𝑓(𝑥𝑗))(𝑚𝑗 + 𝑥𝑗)

𝑥𝑗 = 𝑚𝑗(ℎ𝑗 − 1)

𝑚𝑗(𝑢′(𝑓(𝑥𝑗)) − 𝑣′(𝑚𝑗)) ≤ 𝛽𝜃′ (= if 𝑚𝑗 < �̄�)

𝑤 ≥ 𝐵𝑅(𝑍)
This problem maximizes the hyperplane level for a given set of actions.
The second part of Step 3 then finds the maximum possible hyperplane level across the action space.
The algorithm constructs a sequence of progressively smaller sets 𝑆𝑡+1 ⊂ 𝑆𝑡 ⊂ 𝑆𝑡−1 ⋯ ⊂ 𝑆0.
Step 4 ends the algorithm when the difference between these sets is small enough.
We have created a Python class that solves the model assuming the following functional forms:

𝑢(𝑐) = 𝑙𝑜𝑔(𝑐)

𝑣(𝑚) = 1
500(𝑚�̄� − 0.5𝑚2)0.5

𝑓(𝑥) = 180 − (0.4𝑥)2

The remaining parameters {𝛽, �̄�, ℎ, ℎ̄} are then variables to be specified for an instance of the Chang class.
Below we use the class to solve the model and plot the resulting equilibrium set, once with 𝛽 = 0.3 and once with 𝛽 = 0.8.
We also plot the (larger) competitive equilibrium sets, which we described in competitive equilibria in the Chang model.
(We have set the number of subgradients to 10 in order to speed up the code for now. We can increase accuracy by
increasing the number of subgradients)
The following code computes sustainable plans

"""
Provides a class called ChangModel to solve different
parameterizations of the Chang (1998) model.
"""

import numpy as np
import quantecon as qe
import time

from scipy.spatial import ConvexHull
from scipy.optimize import linprog, minimize, minimize_scalar
from scipy.interpolate import UnivariateSpline
import numpy.polynomial.chebyshev as cheb

class ChangModel:

(continues on next page)

240 Chapter 9. Credible Government Policies in a Model of Chang

Advanced Dynamic Programming

(continued from previous page)

"""
Class to solve for the competitive and sustainable sets in the Chang (1998)
model, for different parameterizations.
"""

def __init__(self, β, mbar, h_min, h_max, n_h, n_m, N_g):
Record parameters
self.β, self.mbar, self.h_min, self.h_max = β, mbar, h_min, h_max
self.n_h, self.n_m, self.N_g = n_h, n_m, N_g

Create other parameters
self.m_min = 1e-9
self.m_max = self.mbar
self.N_a = self.n_h*self.n_m

Utility and production functions
uc = lambda c: np.log(c)
uc_p = lambda c: 1/c
v = lambda m: 1/500 * (mbar * m - 0.5 * m**2)**0.5
v_p = lambda m: 0.5/500 * (mbar * m - 0.5 * m**2)**(-0.5) * (mbar - m)
u = lambda h, m: uc(f(h, m)) + v(m)

def f(h, m):
x = m * (h - 1)
f = 180 - (0.4 * x)**2
return f

def θ(h, m):
x = m * (h - 1)
θ = uc_p(f(h, m)) * (m + x)
return θ

Create set of possible action combinations, A
A1 = np.linspace(h_min, h_max, n_h).reshape(n_h, 1)
A2 = np.linspace(self.m_min, self.m_max, n_m).reshape(n_m, 1)
self.A = np.concatenate((np.kron(np.ones((n_m, 1)), A1),

np.kron(A2, np.ones((n_h, 1)))), axis=1)

Pre-compute utility and output vectors
self.euler_vec = -np.multiply(self.A[:, 1], \

uc_p(f(self.A[:, 0], self.A[:, 1])) - v_p(self.A[:, 1]))
self.u_vec = u(self.A[:, 0], self.A[:, 1])
self.Θ_vec = θ(self.A[:, 0], self.A[:, 1])
self.f_vec = f(self.A[:, 0], self.A[:, 1])
self.bell_vec = np.multiply(uc_p(f(self.A[:, 0],

self.A[:, 1])),
np.multiply(self.A[:, 1],
(self.A[:, 0] - 1))) \

+ np.multiply(self.A[:, 1],
v_p(self.A[:, 1]))

Find extrema of (w, θ) space for initial guess of equilibrium sets
p_vec = np.zeros(self.N_a)
w_vec = np.zeros(self.N_a)
for i in range(self.N_a):

p_vec[i] = self.Θ_vec[i]

(continues on next page)

9.3. Calculating the Set of Sustainable Promise-Value Pairs 241

Advanced Dynamic Programming

(continued from previous page)

w_vec[i] = self.u_vec[i]/(1 - β)

w_space = np.array([min(w_vec[~np.isinf(w_vec)]),
max(w_vec[~np.isinf(w_vec)])])

p_space = np.array([0, max(p_vec[~np.isinf(w_vec)])])
self.p_space = p_space

Set up hyperplane levels and gradients for iterations
def SG_H_V(N, w_space, p_space):

"""
This function initializes the subgradients, hyperplane levels,
and extreme points of the value set by choosing an appropriate
origin and radius. It is based on a similar function in QuantEcon's
Games.jl
"""

First, create a unit circle. Want points placed on [0, 2π]
inc = 2 * np.pi / N
degrees = np.arange(0, 2 * np.pi, inc)

Points on circle
H = np.zeros((N, 2))
for i in range(N):

x = degrees[i]
H[i, 0] = np.cos(x)
H[i, 1] = np.sin(x)

Then calculate origin and radius
o = np.array([np.mean(w_space), np.mean(p_space)])
r1 = max((max(w_space) - o[0])**2, (o[0] - min(w_space))**2)
r2 = max((max(p_space) - o[1])**2, (o[1] - min(p_space))**2)
r = np.sqrt(r1 + r2)

Now calculate vertices
Z = np.zeros((2, N))
for i in range(N):

Z[0, i] = o[0] + r*H.T[0, i]
Z[1, i] = o[1] + r*H.T[1, i]

Corresponding hyperplane levels
C = np.zeros(N)
for i in range(N):

C[i] = np.dot(Z[:, i], H[i, :])

return C, H, Z

C, self.H, Z = SG_H_V(N_g, w_space, p_space)
C = C.reshape(N_g, 1)
self.c0_c, self.c0_s, self.c1_c, self.c1_s = np.copy(C), np.copy(C), \

np.copy(C), np.copy(C)
self.z0_s, self.z0_c, self.z1_s, self.z1_c = np.copy(Z), np.copy(Z), \

np.copy(Z), np.copy(Z)

self.w_bnds_s, self.w_bnds_c = (w_space[0], w_space[1]), \
(w_space[0], w_space[1])

self.p_bnds_s, self.p_bnds_c = (p_space[0], p_space[1]), \

(continues on next page)

242 Chapter 9. Credible Government Policies in a Model of Chang

Advanced Dynamic Programming

(continued from previous page)

(p_space[0], p_space[1])

Create dictionaries to save equilibrium set for each iteration
self.c_dic_s, self.c_dic_c = {}, {}
self.c_dic_s[0], self.c_dic_c[0] = self.c0_s, self.c0_c

def solve_worst_spe(self):
"""
Method to solve for BR(Z). See p.449 of Chang (1998)
"""

p_vec = np.full(self.N_a, np.nan)
c = [1, 0]

Pre-compute constraints
aineq_mbar = np.vstack((self.H, np.array([0, -self.β])))
bineq_mbar = np.vstack((self.c0_s, 0))

aineq = self.H
bineq = self.c0_s
aeq = [[0, -self.β]]

for j in range(self.N_a):
Only try if consumption is possible
if self.f_vec[j] > 0:

If m = mbar, use inequality constraint
if self.A[j, 1] == self.mbar:

bineq_mbar[-1] = self.euler_vec[j]
res = linprog(c, A_ub=aineq_mbar, b_ub=bineq_mbar,

bounds=(self.w_bnds_s, self.p_bnds_s))
else:

beq = self.euler_vec[j]
res = linprog(c, A_ub=aineq, b_ub=bineq, A_eq=aeq, b_eq=beq,

bounds=(self.w_bnds_s, self.p_bnds_s))
if res.status == 0:

p_vec[j] = self.u_vec[j] + self.β * res.x[0]

Max over h and min over other variables (see Chang (1998) p.449)
self.br_z = np.nanmax(np.nanmin(p_vec.reshape(self.n_m, self.n_h), 0))

def solve_subgradient(self):
"""
Method to solve for E(Z). See p.449 of Chang (1998)
"""

Pre-compute constraints
aineq_C_mbar = np.vstack((self.H, np.array([0, -self.β])))
bineq_C_mbar = np.vstack((self.c0_c, 0))

aineq_C = self.H
bineq_C = self.c0_c
aeq_C = [[0, -self.β]]

aineq_S_mbar = np.vstack((np.vstack((self.H, np.array([0, -self.β]))),
np.array([-self.β, 0])))

bineq_S_mbar = np.vstack((self.c0_s, np.zeros((2, 1))))

(continues on next page)

9.3. Calculating the Set of Sustainable Promise-Value Pairs 243

Advanced Dynamic Programming

(continued from previous page)

aineq_S = np.vstack((self.H, np.array([-self.β, 0])))
bineq_S = np.vstack((self.c0_s, 0))
aeq_S = [[0, -self.β]]

Update maximal hyperplane level
for i in range(self.N_g):

c_a1a2_c, t_a1a2_c = np.full(self.N_a, -np.inf), \
np.zeros((self.N_a, 2))

c_a1a2_s, t_a1a2_s = np.full(self.N_a, -np.inf), \
np.zeros((self.N_a, 2))

c = [-self.H[i, 0], -self.H[i, 1]]

for j in range(self.N_a):
Only try if consumption is possible
if self.f_vec[j] > 0:

COMPETITIVE EQUILIBRIA
If m = mbar, use inequality constraint
if self.A[j, 1] == self.mbar:

bineq_C_mbar[-1] = self.euler_vec[j]
res = linprog(c, A_ub=aineq_C_mbar, b_ub=bineq_C_mbar,

bounds=(self.w_bnds_c, self.p_bnds_c))
If m < mbar, use equality constraint
else:

beq_C = self.euler_vec[j]
res = linprog(c, A_ub=aineq_C, b_ub=bineq_C, A_eq = aeq_C,

b_eq = beq_C, bounds=(self.w_bnds_c, \
self.p_bnds_c))

if res.status == 0:
c_a1a2_c[j] = self.H[i, 0] * (self.u_vec[j] \

+ self.β * res.x[0]) + self.H[i, 1] * self.Θ_vec[j]
t_a1a2_c[j] = res.x

SUSTAINABLE EQUILIBRIA
If m = mbar, use inequality constraint
if self.A[j, 1] == self.mbar:

bineq_S_mbar[-2] = self.euler_vec[j]
bineq_S_mbar[-1] = self.u_vec[j] - self.br_z
res = linprog(c, A_ub=aineq_S_mbar, b_ub=bineq_S_mbar,

bounds=(self.w_bnds_s, self.p_bnds_s))
If m < mbar, use equality constraint
else:

bineq_S[-1] = self.u_vec[j] - self.br_z
beq_S = self.euler_vec[j]
res = linprog(c, A_ub=aineq_S, b_ub=bineq_S, A_eq = aeq_S,

b_eq = beq_S, bounds=(self.w_bnds_s, \
self.p_bnds_s))

if res.status == 0:
c_a1a2_s[j] = self.H[i, 0] * (self.u_vec[j] \

+ self.β*res.x[0]) + self.H[i, 1] * self.Θ_vec[j]
t_a1a2_s[j] = res.x

idx_c = np.where(c_a1a2_c == max(c_a1a2_c))[0][0]
self.z1_c[:, i] = np.array([self.u_vec[idx_c]

(continues on next page)

244 Chapter 9. Credible Government Policies in a Model of Chang

Advanced Dynamic Programming

(continued from previous page)

+ self.β * t_a1a2_c[idx_c, 0],
self.Θ_vec[idx_c]])

idx_s = np.where(c_a1a2_s == max(c_a1a2_s))[0][0]
self.z1_s[:, i] = np.array([self.u_vec[idx_s]

+ self.β * t_a1a2_s[idx_s, 0],
self.Θ_vec[idx_s]])

for i in range(self.N_g):
self.c1_c[i] = np.dot(self.z1_c[:, i], self.H[i, :])
self.c1_s[i] = np.dot(self.z1_s[:, i], self.H[i, :])

def solve_sustainable(self, tol=1e-5, max_iter=250):
"""
Method to solve for the competitive and sustainable equilibrium sets.
"""

t = time.time()
diff = tol + 1
iters = 0

print('### --------------- ###')
print('Solving Chang Model Using Outer Hyperplane Approximation')
print('### --------------- ### \n')

print('Maximum difference when updating hyperplane levels:')

while diff > tol and iters < max_iter:
iters = iters + 1
self.solve_worst_spe()
self.solve_subgradient()
diff = max(np.maximum(abs(self.c0_c - self.c1_c),

abs(self.c0_s - self.c1_s)))
print(diff)

Update hyperplane levels
self.c0_c, self.c0_s = np.copy(self.c1_c), np.copy(self.c1_s)

Update bounds for w and θ
wmin_c, wmax_c = np.min(self.z1_c, axis=1)[0], \

np.max(self.z1_c, axis=1)[0]
pmin_c, pmax_c = np.min(self.z1_c, axis=1)[1], \

np.max(self.z1_c, axis=1)[1]

wmin_s, wmax_s = np.min(self.z1_s, axis=1)[0], \
np.max(self.z1_s, axis=1)[0]

pmin_S, pmax_S = np.min(self.z1_s, axis=1)[1], \
np.max(self.z1_s, axis=1)[1]

self.w_bnds_s, self.w_bnds_c = (wmin_s, wmax_s), (wmin_c, wmax_c)
self.p_bnds_s, self.p_bnds_c = (pmin_S, pmax_S), (pmin_c, pmax_c)

Save iteration
self.c_dic_c[iters], self.c_dic_s[iters] = np.copy(self.c1_c), \

np.copy(self.c1_s)
self.iters = iters

(continues on next page)

9.3. Calculating the Set of Sustainable Promise-Value Pairs 245

Advanced Dynamic Programming

(continued from previous page)

elapsed = time.time() - t
print('Convergence achieved after {} iterations and {} \

seconds'.format(iters, round(elapsed, 2)))

def solve_bellman(self, θ_min, θ_max, order, disp=False, tol=1e-7, maxiters=100):
"""
Continuous Method to solve the Bellman equation in section 25.3
"""
mbar = self.mbar

Utility and production functions
uc = lambda c: np.log(c)
uc_p = lambda c: 1 / c
v = lambda m: 1 / 500 * (mbar * m - 0.5 * m**2)**0.5
v_p = lambda m: 0.5/500 * (mbar*m - 0.5 * m**2)**(-0.5) * (mbar - m)
u = lambda h, m: uc(f(h, m)) + v(m)

def f(h, m):
x = m * (h - 1)
f = 180 - (0.4 * x)**2
return f

def θ(h, m):
x = m * (h - 1)
θ = uc_p(f(h, m)) * (m + x)
return θ

Bounds for Maximization
lb1 = np.array([self.h_min, 0, θ_min])
ub1 = np.array([self.h_max, self.mbar - 1e-5, θ_max])
lb2 = np.array([self.h_min, θ_min])
ub2 = np.array([self.h_max, θ_max])

Initialize Value Function coefficients
Calculate roots of Chebyshev polynomial
k = np.linspace(order, 1, order)
roots = np.cos((2 * k - 1) * np.pi / (2 * order))
Scale to approximation space
s = θ_min + (roots - -1) / 2 * (θ_max - θ_min)
Create a basis matrix
Φ = cheb.chebvander(roots, order - 1)
c = np.zeros(Φ.shape[0])

Function to minimize and constraints
def p_fun(x):

scale = -1 + 2 * (x[2] - θ_min)/(θ_max - θ_min)
p_fun = - (u(x[0], x[1]) \

+ self.β * np.dot(cheb.chebvander(scale, order - 1), c))
return p_fun

def p_fun2(x):
scale = -1 + 2*(x[1] - θ_min)/(θ_max - θ_min)
p_fun = - (u(x[0],mbar) \

+ self.β * np.dot(cheb.chebvander(scale, order - 1), c))
return p_fun

(continues on next page)

246 Chapter 9. Credible Government Policies in a Model of Chang

Advanced Dynamic Programming

(continued from previous page)

cons1 = ({'type': 'eq', 'fun': lambda x: uc_p(f(x[0], x[1])) * x[1]
* (x[0] - 1) + v_p(x[1]) * x[1] + self.β * x[2] - θ},

{'type': 'eq', 'fun': lambda x: uc_p(f(x[0], x[1]))
* x[0] * x[1] - θ})

cons2 = ({'type': 'ineq', 'fun': lambda x: uc_p(f(x[0], mbar)) * mbar
* (x[0] - 1) + v_p(mbar) * mbar + self.β * x[1] - θ},

{'type': 'eq', 'fun': lambda x: uc_p(f(x[0], mbar))
* x[0] * mbar - θ})

bnds1 = np.concatenate([lb1.reshape(3, 1), ub1.reshape(3, 1)], axis=1)
bnds2 = np.concatenate([lb2.reshape(2, 1), ub2.reshape(2, 1)], axis=1)

Bellman Iterations
diff = 1
iters = 1

while diff > tol:
1. Maximization, given value function guess

p_iter1 = np.zeros(order)
for i in range(order):

θ = s[i]
res = minimize(p_fun,

lb1 + (ub1-lb1) / 2,
method='SLSQP',
bounds=bnds1,
constraints=cons1,
tol=1e-10)

if res.success == True:
p_iter1[i] = -p_fun(res.x)

res = minimize(p_fun2,
lb2 + (ub2-lb2) / 2,
method='SLSQP',
bounds=bnds2,
constraints=cons2,
tol=1e-10)

if -p_fun2(res.x) > p_iter1[i] and res.success == True:
p_iter1[i] = -p_fun2(res.x)

2. Bellman updating of Value Function coefficients
c1 = np.linalg.solve(Φ, p_iter1)
3. Compute distance and update
diff = np.linalg.norm(c - c1)
if bool(disp == True):

print(diff)
c = np.copy(c1)
iters = iters + 1
if iters > maxiters:

print('Convergence failed after {} iterations'.format(maxiters))
break

self.θ_grid = s
self.p_iter = p_iter1
self.Φ = Φ
self.c = c
print('Convergence achieved after {} iterations'.format(iters))

(continues on next page)

9.3. Calculating the Set of Sustainable Promise-Value Pairs 247

Advanced Dynamic Programming

(continued from previous page)

Check residuals
θ_grid_fine = np.linspace(θ_min, θ_max, 100)
resid_grid = np.zeros(100)
p_grid = np.zeros(100)
θ_prime_grid = np.zeros(100)
m_grid = np.zeros(100)
h_grid = np.zeros(100)
for i in range(100):

θ = θ_grid_fine[i]
res = minimize(p_fun,

lb1 + (ub1-lb1) / 2,
method='SLSQP',
bounds=bnds1,
constraints=cons1,
tol=1e-10)

if res.success == True:
p = -p_fun(res.x)
p_grid[i] = p
θ_prime_grid[i] = res.x[2]
h_grid[i] = res.x[0]
m_grid[i] = res.x[1]

res = minimize(p_fun2,
lb2 + (ub2-lb2)/2,
method='SLSQP',
bounds=bnds2,
constraints=cons2,
tol=1e-10)

if -p_fun2(res.x) > p and res.success == True:
p = -p_fun2(res.x)
p_grid[i] = p
θ_prime_grid[i] = res.x[1]
h_grid[i] = res.x[0]
m_grid[i] = self.mbar

scale = -1 + 2 * (θ - θ_min)/(θ_max - θ_min)
resid_grid[i] = np.dot(cheb.chebvander(scale, order-1), c) - p

self.resid_grid = resid_grid
self.θ_grid_fine = θ_grid_fine
self.θ_prime_grid = θ_prime_grid
self.m_grid = m_grid
self.h_grid = h_grid
self.p_grid = p_grid
self.x_grid = m_grid * (h_grid - 1)

Simulate
θ_series = np.zeros(31)
m_series = np.zeros(30)
h_series = np.zeros(30)

Find initial θ
def ValFun(x):

scale = -1 + 2*(x - θ_min)/(θ_max - θ_min)
p_fun = np.dot(cheb.chebvander(scale, order - 1), c)
return -p_fun

(continues on next page)

248 Chapter 9. Credible Government Policies in a Model of Chang

Advanced Dynamic Programming

(continued from previous page)

res = minimize(ValFun,
(θ_min + θ_max)/2,
bounds=[(θ_min, θ_max)])

θ_series[0] = res.x

Simulate
for i in range(30):

θ = θ_series[i]
res = minimize(p_fun,

lb1 + (ub1-lb1)/2,
method='SLSQP',
bounds=bnds1,
constraints=cons1,
tol=1e-10)

if res.success == True:
p = -p_fun(res.x)
h_series[i] = res.x[0]
m_series[i] = res.x[1]
θ_series[i+1] = res.x[2]

res2 = minimize(p_fun2,
lb2 + (ub2-lb2)/2,
method='SLSQP',
bounds=bnds2,
constraints=cons2,
tol=1e-10)

if -p_fun2(res2.x) > p and res2.success == True:
h_series[i] = res2.x[0]
m_series[i] = self.mbar
θ_series[i+1] = res2.x[1]

self.θ_series = θ_series
self.m_series = m_series
self.h_series = h_series
self.x_series = m_series * (h_series - 1)

9.3.1 Comparison of Sets

The set of (𝑤, 𝜃) associated with sustainable plans is smaller than the set of (𝑤, 𝜃) pairs associated with competitive
equilibria, since the additional constraints associated with sustainability must also be satisfied.
Let’s compute two examples, one with a low 𝛽, another with a higher 𝛽

ch1 = ChangModel(β=0.3, mbar=30, h_min=0.9, h_max=2, n_h=8, n_m=35, N_g=10)

ch1.solve_sustainable()

Solving Chang Model Using Outer Hyperplane Approximation

Maximum difference when updating hyperplane levels:

9.3. Calculating the Set of Sustainable Promise-Value Pairs 249

Advanced Dynamic Programming

[1.9168]

[0.66782]

[0.49235]

[0.32412]

[0.19022]

[0.10863]

[0.05817]

[0.0262]

[0.01836]

[0.01415]

[0.00297]

[0.00089]

[0.00027]

[0.00008]

[0.00002]

[0.00001]
Convergence achieved after 16 iterations and 42.62 seconds

The following plot shows both the set of 𝑤, 𝜃 pairs associated with competitive equilibria (in red) and the smaller set of
𝑤, 𝜃 pairs associated with sustainable plans (in blue).

def plot_equilibria(ChangModel):
"""
Method to plot both equilibrium sets
"""
fig, ax = plt.subplots(figsize=(7, 5))

ax.set_xlabel('w', fontsize=16)
ax.set_ylabel(r"θ", fontsize=18)

(continues on next page)

250 Chapter 9. Credible Government Policies in a Model of Chang

Advanced Dynamic Programming

(continued from previous page)

poly_S = polytope.Polytope(ChangModel.H, ChangModel.c1_s)
poly_C = polytope.Polytope(ChangModel.H, ChangModel.c1_c)
ext_C = polytope.extreme(poly_C)
ext_S = polytope.extreme(poly_S)

ax.fill(ext_C[:, 0], ext_C[:, 1], 'r', zorder=-1)
ax.fill(ext_S[:, 0], ext_S[:, 1], 'b', zorder=0)

Add point showing Ramsey Plan
idx_Ramsey = np.where(ext_C[:, 0] == max(ext_C[:, 0]))[0][0]
R = ext_C[idx_Ramsey, :]
ax.scatter(R[0], R[1], 150, 'black', 'o', zorder=1)
w_min = min(ext_C[:, 0])

Label Ramsey Plan slightly to the right of the point
ax.annotate("R", xy=(R[0], R[1]),

xytext=(R[0] + 0.03 * (R[0] - w_min),
R[1]), fontsize=18)

plt.tight_layout()
plt.show()

plot_equilibria(ch1)

Evidently, the Ramsey plan, denoted by the 𝑅, is not sustainable.
Let’s raise the discount factor and recompute the sets

9.3. Calculating the Set of Sustainable Promise-Value Pairs 251

Advanced Dynamic Programming

ch2 = ChangModel(β=0.8, mbar=30, h_min=0.9, h_max=1/0.8,
n_h=8, n_m=35, N_g=10)

ch2.solve_sustainable()

Solving Chang Model Using Outer Hyperplane Approximation

Maximum difference when updating hyperplane levels:

[0.06369]

[0.02476]

[0.02153]

[0.01915]

[0.01795]

[0.01642]

[0.01507]

[0.01284]

[0.01106]

[0.00694]

[0.0085]

[0.00781]

[0.00433]

[0.00492]

[0.00303]

[0.00182]

252 Chapter 9. Credible Government Policies in a Model of Chang

Advanced Dynamic Programming

[0.00638]

[0.00116]

[0.00093]

[0.00075]

[0.0006]

[0.00494]

[0.00038]

[0.00121]

[0.00024]

[0.0002]

[0.00016]

[0.00013]

[0.0001]

[0.00008]

[0.00006]

[0.00005]

[0.00004]

[0.00003]

[0.00003]

[0.00002]

[0.00002]

9.3. Calculating the Set of Sustainable Promise-Value Pairs 253

Advanced Dynamic Programming

[0.00001]

[0.00001]

[0.00001]
Convergence achieved after 40 iterations and 123.73 seconds

Let’s plot both sets

plot_equilibria(ch2)

Evidently, the Ramsey plan is now sustainable.

254 Chapter 9. Credible Government Policies in a Model of Chang

Part II

Other

255

CHAPTER

TEN

TROUBLESHOOTING

Contents

• Troubleshooting

– Fixing Your Local Environment

– Reporting an Issue

This page is for readers experiencing errors when running the code from the lectures.

10.1 Fixing Your Local Environment

The basic assumption of the lectures is that code in a lecture should execute whenever
1. it is executed in a Jupyter notebook and
2. the notebook is running on a machine with the latest version of Anaconda Python.

You have installed Anaconda, haven’t you, following the instructions in this lecture?
Assuming that you have, the most common source of problems for our readers is that their Anaconda distribution is not
up to date.
Here’s a useful article on how to update Anaconda.
Another option is to simply remove Anaconda and reinstall.
You also need to keep the external code libraries, such as QuantEcon.py up to date.
For this task you can either

• use conda install -y quantecon on the command line, or
• execute !conda install -y quantecon within a Jupyter notebook.

If your local environment is still not working you can do two things.
First, you can use a remote machine instead, by clicking on the Launch Notebook icon available for each lecture

257

https://python-programming.quantecon.org/getting_started.html
https://www.anaconda.com/blog/keeping-anaconda-date
https://quantecon.org/quantecon-py

Advanced Dynamic Programming

Second, you can report an issue, so we can try to fix your local set up.
We like getting feedback on the lectures so please don’t hesitate to get in touch.

10.2 Reporting an Issue

One way to give feedback is to raise an issue through our issue tracker.
Please be as specific as possible. Tell us where the problem is and as much detail about your local set up as you can
provide.
Another feedback option is to use our discourse forum.
Finally, you can provide direct feedback to contact@quantecon.org

258 Chapter 10. Troubleshooting

https://github.com/QuantEcon/lecture-python/issues
https://discourse.quantecon.org/
mailto:contact@quantecon.org

CHAPTER

ELEVEN

REFERENCES

259

Advanced Dynamic Programming

260 Chapter 11. References

CHAPTER

TWELVE

EXECUTION STATISTICS

This table contains the latest execution statistics.

Document Modified Method Run Time (s) Status
amss 2024-05-01 01:41 cache 193.55 ✅
amss2 2024-05-01 01:42 cache 54.87 ✅
amss3 2024-05-01 01:46 cache 244.51 ✅
calvo 2024-05-01 01:46 cache 6.01 ✅
chang_credible 2024-05-01 01:49 cache 172.4 ✅
chang_ramsey 2024-05-01 01:55 cache 337.37 ✅
dyn_stack 2024-05-01 01:55 cache 7.28 ✅
intro 2024-05-01 01:55 cache 4.02 ✅
opt_tax_recur 2024-05-01 01:56 cache 72.12 ✅
status 2024-05-01 01:56 cache 4.87 ✅
troubleshooting 2024-05-01 01:55 cache 4.02 ✅
un_insure 2024-05-01 01:57 cache 11.48 ✅
zreferences 2024-05-01 01:55 cache 4.02 ✅

These lectures are built on linux instances through github actions.
These lectures are using the following python version

!python --version

Python 3.11.7

and the following package versions

!conda list

261

Advanced Dynamic Programming

262 Chapter 12. Execution Statistics

BIBLIOGRAPHY

[Abr88] Dilip Abreu. On the theory of infinitely repeated games with discounting.Econometrica, 56:383–396, 1988.
[APS90] Dilip Abreu, David Pearce, and Ennio Stacchetti. Toward a theory of discounted repeated games with

imperfect monitoring. Econometrica, 58(5):1041–1063, September 1990.
[AMSSeppala02] S Rao Aiyagari, Albert Marcet, Thomas J Sargent, and Juha Seppälä. Optimal taxation without state-

contingent debt. Journal of Political Economy, 110(6):1220–1254, 2002.
[Bar79] Robert J Barro. On the Determination of the Public Debt. Journal of Political Economy, 87(5):940–971,

1979.
[BEGS17] Anmol Bhandari, David Evans, Mikhail Golosov, and Thomas J. Sargent. Fiscal Policy and Debt Manage-

ment with Incomplete Markets. The Quarterly Journal of Economics, 132(2):617–663, 2017.
[Cag56] Philip Cagan. The monetary dynamics of hyperinflation. In Milton Friedman, editor, Studies in the Quantity

Theory of Money, pages 25–117. University of Chicago Press, Chicago, 1956.
[Cal78] Guillermo A. Calvo. On the time consistency of optimal policy in a monetary economy. Econometrica,

46(6):1411–1428, 1978.
[Cha98] Roberto Chang. Credible monetary policy in an infinite horizon model: recursive approaches. Journal of

Economic Theory, 81(2):431–461, 1998.
[CK90] Varadarajan V Chari and Patrick J Kehoe. Sustainable plans. Journal of Political Economy, pages 783–802,

1990.
[HN97] Hugo A Hopenhayn and Juan Pablo Nicolini. Optimal Unemployment Insurance. Journal of Political Econ-

omy, 105(2):412–438, April 1997. URL: https://ideas.repec.org/a/ucp/jpolec/v105y1997i2p412-38.html,
doi:10.1086/262078.

[Jud98] K L Judd. Numerical Methods in Economics. Scientific and Engineering. MIT Press, 1998.
[JYC03] Kenneth L. Judd, Sevin Yeltekin, and James Conklin. Computing Supergame Equilibria. Econometrica,

71(4):1239–1254, 07 2003. URL: https://ideas.repec.org/a/ecm/emetrp/v71y2003i4p1239-1254.html,
doi:.

[KP80] Finn E Kydland and Edward C Prescott. Dynamic optimal taxation, rational expectations and optimal
control. Journal of Economic Dynamics and Control, 2:79–91, 1980.

[LS18] L Ljungqvist and T J Sargent. Recursive Macroeconomic Theory. MIT Press, 4 edition, 2018.
[LS83] Robert E Lucas, Jr. and Nancy L Stokey. Optimal Fiscal and Monetary Policy in an Economy without

Capital. Journal of monetary Economics, 12(3):55–93, 1983.
[Sar77] Thomas J Sargent. The Demand for Money During Hyperinflations under Rational Expectations: I. Inter-

national Economic Review, 18(1):59–82, February 1977.
[Sar87] Thomas J Sargent. Macroeconomic Theory. Academic Press, New York, 2nd edition, 1987.

263

https://ideas.repec.org/a/ucp/jpolec/v105y1997i2p412-38.html
https://doi.org/10.1086/262078
https://ideas.repec.org/a/ecm/emetrp/v71y2003i4p1239-1254.html
https://doi.org/

Advanced Dynamic Programming

[SW79] Steven Shavell and Laurence Weiss. The optimal payment of unemployment insurance benefits over time.
Journal of political Economy, 87(6):1347–1362, 1979.

[Sto89] Nancy L Stokey. Reputation and time consistency. The American Economic Review, pages 134–139, 1989.
[Sto91] Nancy L. Stokey. Credible public policy. Journal of Economic Dynamics and Control, 15(4):627–656,

October 1991.

264 Bibliography

INDEX

M
Models

Additive functionals, 45

265

	I Dynamic Programming Squared
	Optimal Unemployment Insurance
	Overview
	Shavell and Weiss’s Model
	Autarky
	Full Information
	Incentive Problem

	Private Information
	Computational Details
	Python Computations
	Parameter Values
	Computation under Private Information
	Algorithm

	Outcomes
	Replacement Ratios and Continuation Values
	Interpretations

	Stackelberg Plans
	Overview
	Duopoly
	Stackelberg Leader and Follower
	Statement of Leader’s and Follower’s Problems
	Firms’ Problems

	Stackelberg Problem
	Interpretation of Second Block of Equations
	More Mechanical Details
	Two Subproblems

	Two Bellman Equations
	Stackelberg Plan for Duopoly
	Calculations to Prepare Duopoly Model
	Firm 1’s Problem

	Recursive Representation of Stackelberg Plan
	Comments and Interpretations

	Dynamic Programming and Time Consistency of Follower’s Problem
	Recursive Formulation of a Follower’s Problem
	Time Consistency of Follower’s Plan

	Computing Stackelberg Plan
	Time Series for Price and Quantities
	Value of Stackelberg Leader

	Time Inconsistency of Stackelberg Plan
	Recursive Formulation of Follower’s Problem
	Explanation of Alignment

	Markov Perfect Equilibrium
	Comparing Markov Perfect Equilibrium and Stackelberg Outcome

	Ramsey Plans, Time Inconsistency, Sustainable Plans
	Overview
	The Model
	Structure
	Intertemporal Structure
	Four Models of Government Policy
	A Ramsey Planner
	Subproblem 1
	Subproblem 2
	Representation of Ramsey Plan
	Multiple roles of θt
	Time Inconsistency

	A Constrained-to-a-Constant-Growth-Rate Ramsey Government
	Markov Perfect Governments
	Outcomes under Three Timing Protocols
	Time Inconsistency of Ramsey Plan
	Meaning of Time Inconsistency
	Ramsey Plans Strike Back

	A Fourth Model of Government Decision Making
	A Theory of Government Decision Making
	Temptation to Deviate from Plan

	Sustainable or Credible Plan
	Abreu’s Self-Enforcing Plan
	Abreu Carrot-Stick Plan
	Example of Self-Enforcing Plan
	Recursive Representation of a Sustainable Plan

	Whose Credible Plan is it?
	Comparison of Equilibrium Values
	Note on Dynamic Programming Squared

	Optimal Taxation with State-Contingent Debt
	Overview
	A Competitive Equilibrium with Distorting Taxes
	Arrow-Debreu Version of Price System
	Primal Approach
	The Implementability Constraint
	Solution Details
	The Ramsey Allocation for a Given Multiplier
	Further Specialization
	Determining the Lagrange Multiplier
	Time Inconsistency
	Specification with CRRA Utility
	Sequence Implementation

	Recursive Formulation of the Ramsey Problem
	Intertemporal Delegation
	Two Bellman Equations
	The Continuation Ramsey Problem
	The Ramsey Problem
	First-Order Conditions
	State Variable Degeneracy
	Manifestations of Time Inconsistency
	Recursive Implementation

	Examples
	Anticipated One-Period War
	Government Saving
	Time 0 Manipulation of Interest Rate
	Time 0 and Time-Inconsistency
	Tax Smoothing and non-CRRA Preferences
	Further Comments

	Optimal Taxation without State-Contingent Debt
	Overview
	Competitive Equilibrium with Distorting Taxes
	Risk-free One-Period Debt Only
	Comparison with Lucas-Stokey Economy
	Ramsey Problem Without State-contingent Debt
	Lagrangian Formulation

	Some Calculations

	Recursive Version of AMSS Model
	Recasting State Variables
	Measurability Constraints
	Two Bellman Equations
	Martingale Supercedes State-Variable Degeneracy
	Absence of State Variable Degeneracy
	Digression on Non-negative Transfers
	Code

	Examples
	Anticipated One-Period War
	Perpetual War Alert

	Fluctuating Interest Rates Deliver Fiscal Insurance
	Overview
	Forces at Work
	Logical Flow of Lecture
	Equations from Lucas-Stokey (1983) Model
	Specification with CRRA Utility

	Example Economy
	Reverse Engineering Strategy
	Code for Reverse Engineering
	Short Simulation for Reverse-engineered: Initial Debt
	Long Simulation
	Remarks about Long Simulation

	BEGS Approximations of Limiting Debt and Convergence Rate
	Asymptotic Mean
	Rate of Convergence
	Formulas and Code Details

	Fiscal Risk and Government Debt
	Overview
	The Economy
	First and Second Moments

	Long Simulation
	Asymptotic Mean and Rate of Convergence
	Asymptotic Mean
	Rate of Convergence
	More Advanced Topic
	Chicken and Egg
	Approximating the Ergodic Mean
	Step by Step
	Execution
	Step 1
	Step 2

	Note about Code
	Running the code
	Step 3
	Step 4
	Step 6

	Competitive Equilibria of a Model of Chang
	Overview
	The Setting

	Setting
	The Household’s Problem
	Government
	Household’s Problem

	Competitive Equilibrium
	Inventory of Objects in Play
	Analysis
	Some Useful Notation
	Another Operator

	Calculating all Promise-Value Pairs in CE
	Solving a Continuation Ramsey Planner’s Bellman Equation
	Next Steps

	Credible Government Policies in a Model of Chang
	Overview
	The Setting
	The Household’s Problem
	Government
	Within-period Timing Protocol
	Household’s Problem
	Competitive Equilibrium
	A Credible Government Policy
	Sustainable Plans

	Calculating the Set of Sustainable Promise-Value Pairs
	Comparison of Sets

	II Other
	Troubleshooting
	Fixing Your Local Environment
	Reporting an Issue

	References
	Execution Statistics
	Bibliography
	Index

